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A bstract

Application olf 2 tal Variation Diminishing (fVD~jschemes to both inviscid

and viscous flows is considlered. The mathematical and physical basis of TVI)

Schemles.is.cliscussccl. First and second-order accurate TVI) schiemes,,anc a se(.ind-

order accurate Lax-Wcitcllroff schiem.c are used to compute solutionsb to the Iliieni
Jproblem in ordler to investigate the capability of each wo resolve shiocks. rarefactions,

and con tact su rfaces. Second-order finite-volume and fin ite-li fference TVI) schemebc

are used to obtain solutions to inx iscid supersonic and tr.anbonic cascade flow pi 01)-

lems. TIVD schecmes are showii to be superior to the Lax-Wcndroff family of schemes

for both transient and st eadyv-sta te computations.

TYD methodology is extended to Uieiolution of viscous flowv prob~lems. A first-'

order time accurate. second-or,:ei ,,pace accurate algorithm is contrasted aainst

a second-order time and space accurate algorithmn for Qhe solution of the viscous

Burgers equation. Necessity of using the fuily second-order accurate algorithm at
= low Rey~nolds numbcrs is showni. Solutionsb me comp~uted toI'h rbeso aia

shiock- bounclary- layer interact ion and unsteady. laminar, shiock-ind uceci heat ti ans-fum

using" til new agrdis, hs a grtlms prov~ide the capalbility,- for the first timne.

to accurately predict sepaia Lion. rea ttachment. and pressure and ,kin friction p1 ofileb

for ho- )1ndr-lyrin teraction. ditimaIvet inyaccurate comnpa isonV

with theor ,y and experiment iseietfor the unsteady. shiock-induce.! beal tiansem1

p~rolem. These SOILtit ion are ot atdagainst solutions comp~uted with le Be, m-
\-Vrmin- lgorithim and die 'PVI soltions are shown to be vastly superior. -



HIGH-RESOLUTION TVD SCHEMNES FOR TH-E ANALYSIS OF

I. INVISCID SUPERSONIC AND TRANSONIC FLOWS

11. VISCOUS FLOWS WITH SHOCK-INDUCED

SEPARATION AND HEAT TRANSFER

I. It rodu~cti'on to Part I

1,i Ovcuvietw of Pad I

P"art I begfins with a historical look at the (leveloprient of whalt h~as become

known as the Total Variation Diminishing (TVi)) class of chemes for solving hyvp'? -

bolic conservation laws. Conditions necLssai% for a finite-,Ciffcrence scheme to vield~

phsily meaningful solutions arc (list tssewd. 1),, elopinei-t of a second-order act u-

rate TVI) scheme for scalar conservation laws Is detailedl, along with the mleans or

extendingr it to sy-stemns such as the Eului eqjuations of' gas(lynamics". A brief discus-

sion of the Eulier eqjuations is undertaken in the context of aplyling TVi) schemnes to

their solut ion. Fi rsit-orclcr 'iWO. second-order T VDI. an tw scond-ot cer Lax- Wend ruff

sChem(?s are applied to Lte f? ieniann pro(bleml Io( det~erinne IieC ab~ility of' ea, 11 1,.

resolve the relevant features. Two seconld-old(er T\'D s'chemes fo0; solving" svst ems of

cequations in Iwo space cdimensions are coveiedl. The.se two schemnes ate then appliedl

to thle Solution of' 1)0th supersonic and transonir (a. dS q~hfowv prohlbin'%. JAi) algo-

ri-thlms are Shownu to be vastly sulperor to I he Lax-W\endi oil f; of' algoi-i0 huns for)I

both transient and steady-state solutions.

1.2 The Gtn. is of TI"D

TVotal Variation Dirninishing (TYD) chemues. originally, referecl to as Total Vat;-

at ion Noniticreasing (TVNI). first. appleared in 198:3 wvith he~ publication of I larten s

[igh fResolulionu Schemnes for 1Iypcri-boli' (7osrrriiOn Laiws [22]. in general. r\,f)

schemes are arrived at bv ap~plying a finrorder amciiate nimmerica I met hod to a n



-,pp1oIpriatey modified flux tunctioti huILs Viedi'll it Method -,at is ',QCOII(l-0rdCl ac-
curate except near points of extrema of the solution. The genesib of' the TVD class,

of finite-chfference schemes canl be traced to 1976 %\i 'i flarten. Hylman. and Lax au-

( thored On Fin itc-Difference Appmimr~ation6, andl Ei v )flOditionz, for Shod-,, [2:31.

This work first addressed the question of w~ietht. . -2JIference approximiations

to- the solution of hyperbolic conservation laZMS A. :", *' ,he physicz.Ily releva-zit.

soIlutionl. This is of interest b~ecause weak solutions tV ch coiiser ation law., el(C I!UL

uniq~uely determined by initial values, lbut require ai . v condition lbe miett.0

converge to the p~articular p~hysical solution [23].

In the mid 1970!s, 1-arten was also working on his 2rt0ificial compinession met-hod

(ACMI) (19] to modify standard finite-difference schemes inl an eflort to prevenlt,.11ce
s-mearing of contact surfaces and improve shock resolutioii [20. 21]. Prioi to this

effort H-artcn states that the standard finite-difference ",cheines In I[.)e L% licall%

smeared shocks over 3-5 cells while the wvidth of thc contact surface behiaved 'Li
1,1 1(l1 where ni is the total number of time step)s taken and Rt is the b( hemc's Order

of accuracy. 1-arten's ACM also addressed the fact that bchemles" or ordet g'reate.,

than one produced overshoots and undershoots aroti-d thle discontinuity [20' .nid

forced the ap~proximated solution to be nonp~hysical [2:31. ilarteifs .\CN miocifica.-

tions to existing, schemes p~rovided thle : indation fo, tow new ciass of rFVD sine

presentedl in his 198:3 paper.

The rigorous mathenmatical foundation of TVD schemes :h mainly confined to

scalar inear and nonlinear conservation laws and( is pai~istakingly out lined in r--

erences [23] and [22]. Computational fluid dynamicists are interested iii aplv\imiQ,

TVD schemes to systemns of nonlinear hyperbolic conser~ational.s such a: the l 'u-

ler tcluat ions of gasdynamics. Therefore. Ilarten details the application or r,.,]

melthodo.logyV to I -D systemns u.sing Roe's ap)pioxinjdte Riemianii sol\ i l1(l pm o~idlc.

anl exNamplle of itsextension to 2-1) using .St~ramigs. dimensional split] ing '22]. The 01 ig-

inai 1larten Scheme was a. Second-ordet acciirate exlicit m.net-hod but k% d.S extenided

to a, second-order accurate implicit. method by Yee and~ Hartenl [-1:3].

The high. tesolution TVD applroach soon gathered favor; explicit and! i mpl i i

vatriations were then appllied to the Eler equatiow. inl geineral "Comet tIes'. by Yee adud

Kutler [4l4] and by Yee and Ifarten V1l61. Later. Waing and \Vidhmopf furthem extended

H-arten's rPvi) methodoogy to a. finite-volunie s( hem( for the Eiler equations 1.



T\'D algoril.hms have contin1:'d to develof) over the past decade. Nlartenl' origi-7
nal scheme was of the upwind variety, meaninog that the modifications 1o 'he flux

function are aPplied base'I on the direction of wave propagatni., or chara, rar:l ic

('rection. Symmetric algoriftbms have since comc into use whore the modlfih ation-

are applied without. rega,-d to the characteristic directions. Muhlods are also avail-

able for partial differential equations with source terms and stil[ source terms. Yce's

1989 publication,A Class of JHigh-I-e.;olulion Explicit and Implicit Shock-('apturing

Methods [4,5], pr ides demailed information on numerous versions of TVI) algorithms

and examples of their application to nuicerous problems.

1.2 Hfyperbolic Conis(crvation Laws and T1 D !lthodology

The present section provides a descript ion of the hyperbolic con.servation laws

for which TvD schemes provide solu(tions. ['he requ;rements for uniquenes: of a,

solution to the initial value problem are given along %%itlh the necessary conditions

to guarantee convergence of a finite difference approximation to this solution. A

summary is provided of the methodolog- behind the construction of Harten's original

second-order accurate TVD scheme.

/..3.1 Finile-Diflference Schemes ana Oleiniks Eniropy Condition. The ;)w,'ent

analysis is concerned with wea- soluiions of the initial value problem

lit + .f(u),=-

< < c 1.1)

t(., 0) = o(.)

where u(x.1) is a colhionn vector of inm umn.,,vn. f(u) is the flux vector of in

components, and o(,.) is the initial data. EIq 1.1 is hyperbolic if all ,'i iemvalkwie
11(a) I.. (u) of le Jac)bian mal,rix

.4( ) = .,(1.2)

are real and the set. of right eigenvector W(u) ..... I?.' (u) is compleie [22] over le

domain.

3,



Following larten [22]. con.,,ider syst.em., of conservation laws. E, 1.1. possess-

ing an entropy function IU(u) definied such that

l > 0 It U (1.3)
' . =1, =

where i:' is a [unction known as the entropy% flux [22].

The class of all weak solutions to Eq 1.1 is too large in that the initial value

iproblem is not unique [23]. \n additionial const-raining relation i,, needed if the

scheme is to choose tlie phyicaly relevant ,olut.ion. Fhiis a(ditioial constraint is

known as Olinik's entropy condit-ion and can be expressed as [23]

'(1)h + l(a . (:S)

Let us now consider numerical solutions to Eq 1.1 obtained 'ising a (2: + 1)

point explicit scheme in conservation f'orn [23]. A scheme is in coe:'vatioi form if

it can be expressed as

Ie.'/2 = .I _..+ (I .6)

and A = l/. .r. In Eqs 1.5 and 1.6. f is the "'numericaF . or insh. flux function

consistent wit.h ./ u) in that .(1 ..... 1) = (u) The solution u is ap)roximated oin

the me.,h yI1V " = v(jiA. h\l. The nimuerical sclhene _,iien )y Eq 1.5 is coliisi 'iii

wilh the eatropy condiion. q I.-I. if

I -+ 1 A ,-.71

whereL i P(_.+ .. k)- and I" is the numericAi ent.ropY

flux consistent with F(Iu) such that /(u ..... it) = /"u)

['The question of" convergent e of the finite difference ,;cheune. Eq .5. to the al)-

l)ropriate weak solut.ion of' Eq I.1 nlll.st. Ito% bIv ,dodressed. The *hiene Illider oilsid-



erattion is nonlinear'. so stability of tI coisisteit schemelI dcl, not, imply cumi\ I nCIH.

Thartenl [22] ou~tlinles three (OII1(liiOnS %hidi. whien satisfied. ensure coIIYeigcnce.

(1) The total variation (7T) of' (lhe finite difference scheme is uniformly

b)oundedC. where

(2) The scheme is consistent. as 2\x -0 . with Oleinil's entropy

conchition for all en tropy ini ciions of' I A

(:3) Oleinliks ent-ropy Condition impjlies ait uniqu~e solution of tile

initial vatile plemlCf for Eq 1.1.

The reader is referred to the references given b~y H-adeon [221 for' the arguinents

that imply convergence givei WhtIstction of the above criteria. For the p~resen~t

work, the validity of these criteria will be assumed and the effor concentrated cmn

clemonstrating Sie clevelomnient of' it s lieme thla. satisfies criteria (1) and (2) whien

givenI the thirl citerion.

1.3J.2 Developnicul o.I Ha,r u Is A cond-Okdc Scalair T1 *D Schieme. iarteN s

second-orlei accurate lTl) -cheiiie is thle p~rodluct of" a nono1scillatorv. first-orde;

accurate schem cajpplied to an approl); atk; modim filt,. function j221. Tisi sect ion

dlescriles tihe prolpertes of he first -ordei mheinfJcanud ou~tline~s the I'' Od (dure ,,svdl)

Hla mien Lo arrive at the aj)p)rpd'a i mioTi l flux.

Consider ulhe initial value- p~roblem~ for a Scalar conservaionl la%:

lit +, f(uI)J. ait + v(Ul. 0

11(x. 0)= ,x

where o(x) is of hoiundcd Lotai variation. Higolotis analysis is restricted to hie -scalau

Case b~ecauise TVDI schenwis are not1 derfinedl I'm sminis of of noin)vi tar t oniser' ilio



lws where the spatial total variation or the SOIlution may increase due to wave

interaction [22]_

A weak solution of Eq 1.9 has a monotonicity property 1221, as it function of'

time. dlefinedi as:

(1) No new local extrema in x my be created.

(2) A local minlimum is nonclecreasing and a local maximium

is nonincreasing.

The monotonicitY property implies that the total variation in xv is noiiincrea-sing III

timec. TV (1 (1t))) < TI/(11 (1i)).

An explicit. (24 + 1), p)oint finite-cliffereiice scheme in conseivation form. as

given b~y Ec1 1.5 and applied to Eq 1.9. can be written as

= ~ V -A[I(Vk+i ... . 1 (v> VILki)

or in opeCrator notation as

The scheme gvnby- Eq 1.10 Is i'VI if. roi- all t- of bounded total variation

TlV,([ :1v) TV(v) (1.12)

Where thle total variation is deined b% Eq J .S. Eq 1.11 relpresents x nionotoii;v

IPreserV~II14 scheme if tile operator L is monotonicityv preserving. nihat is.. ifr t.is a

monotonic mnesh function so is L -r. The scheme is monotone if 11 is a n()noimic

iondecreasing, function of each of it's 2k + I ar'mmm ws 1231:

for all i suchI dtt. -k < i < k.



An example of a, scheme that is not monotone is the second-order accuiate

Lax-\Wendroff scheme with

where -/\+.Lv = V'+ - v) . 'lherefore Lhe discrete equatioll ;s

0+ v - -LA lat.I-1P1-"A LV71 2v1 1*7
3 v 2 ,\ f "- (1.15)

-- i-~~,-jl

'Jaking the derivative of H1 with respect to I he argitileilt r 'L. vie(is

= .~ GA -"(1.16

where v = aA . Only the case 0 < i, < [ need be examined since the Law-\\endrofr

scheme is unstable for v > 1. -- d Lax-\Vendroff provides the exact solution for v = 1.
Clearly, the Lax-WVendlroff schime is not monotone for any v < I . Additionally.

the numerical results of reference 231 show that the Lax-Wendroff -,chicme is nut

monotonicity l)reservin g.

The first-order accurate Roe schene )rovides an examile of monotone belha-

ior. The numerical flux for the Roe scheme is

, '[fs(;') -- f("°) - , jo "1~ 1.

giving I.lie discrete equation

-.+ , - '.A [Js (.; ,-1  -1 - ~:,, _,_'_2,; 1 . )
2 (1 4 , ,--!



Taking derivatives of II with respect to each of its arguments gives

II!, a_ = t1"

H , = l-t (1.19)

II 0

Thus. ! is a monotonic, non-decreasing function of each of its ,g1.101-,howing

that the Roe scheme is indeed monotonic.

Let Sm; S-vD. and Sip denote monotone. TVD. and monotonicity preserving

schemes respectively. Theorem 2.1 of reference [221 pro ides the hietarchiy of these

piropertics:

S1 C S-'v C S'I, (1.20)

Thus. the Roe scheme is also TVI) and monotonicity preserving.

A scheme in the conservation form of i.q 1.10 that is monotone with v. colnverg-

ing boundedly almost everywhere to some fun.tion z(x. 1) h,, two further desirable

properties. The theorem of Lax and .Vendroff as given by refer-ence [231 states that

if the scheme is in conservation form with .(.r.t ) converging almost everwhere to

t(.r. I). then u(x. 1) is a. weak solution of Eq 1.9. The theorem of flatten. Ilyman.

and Lax "23] states that. if the scheme is monotone in addition to meeting the trite-

rza of the Lax-\Wendrolf theorem. then Oieinik's entrop% condition i s,atisfictl for At

dIsCoInttinuitieS of it. Thus a monotone .)ch-nz satisfies the co:,mergenze hieria fou a

unique solution of the initial value problem vi stated in the Section 1.3.1.

Attention is now focused on how the properties of a monotone s.cheme are help-
ful in constructing Ilarten's second order rVI).Lheme. laz te, slates thmi ntnootne1

schemes provide second-order accurate sl1iE io"I.i to 1he modified Eq [221

It. + f(ii. = AI "3tii.Aht,.! s1.211

3(u A) = U iu .... it) - A2a(?L) (1.22)

3(ut. AI > 0

3(mt. A) # 0



where t3 is a numerical dissipattion term. Since 3(it. A) -# 0. monotone ,,chienes Zile

only first-order accurate approximations to the initial value pr'oblem of' Lq 1.9.

Suppose the schieme given by Eq 1. 10 is a monotone :sdicme aIl(l thus p~rovides

at second-order accurate numerical applroximationl to the niudified equation, E ( 1.2 1.

rewritten ais

ut + (f- /A)g),. = 0 (1.2:3)

where g = Axp(u, A)ux.. Applying this schenic to the following ecquation

tit~( + (1/1\)g)X = 0 (.4

yields a. second-order accurate approximlationl to itS mod0(ified equ1-ation. Since y 01-X

the modified equation satisfies [22]

lit + .f 0[A)}(t.2.5)

Thus. application of a first-order scheme to a. scalar conservation law with an

ap~propriately modified flux function yields a second-order accuratte atpproximation

to the original equation tit + j~=0. Note that in order to apply the scheme to the

Modified filux, function, g must be a dliffer'entiab~le function of u. flat tell achie\ e., this

by smoothing the point \-aluies of g [221. This smoothing enlirges the Su~l)oIt, of'

the schemne such that his first-order schme uing a. three-point. stenlcil, bCcomes at

second-order schemne Using a five-fpoint stencil. The ieadei i, lelerled to reeeie[22]

for the dletails of hiow Hie three-pfoint, first-order.schieme is constructed so c1., to enlsic

its TVD property.

Let us now turn our attention t~o the specific scalar scheme developed b)

Jiartenl. Consider a three-point, finitce-diffei eine scheme lin conser~ ation formn v itli

010 foowing num.1ierical flux function

f('~v31)= ~[fv 3 )-i.f v.+1)- I/A)Q (AF\,+1,2) A,+1/2L'J (1.26)



where Aj+4/2v =vj+ - vj and

= [lvj+,) - *(v)]/,+,/.v (Aj+112V o)av~j I(+ 11.2 v 7- (1.27)(I ,,(.) ( j+1/2V = 0)

Q is a, function known as the coefficient of numerica-l viscosity. Numerical viscosity

is the mechanism that allows a discontinuity to be ca)tured as part of the numerical

solution [201. This is in contrast to shock fitting, where the discontinuity is considered

as an internal boundary.

Lemma. 3.1 of reference [22] states that the above scheme is TVD under the

Cou rait,-Fried richs-Lewv (CFL) condition

,maIxV'+, 21 <- (1.28)

given

Ix < ( ) (1.29)

for 0 < IxI <p < 1.

The first-order accurate three-point scheme given by Eq 1.26 is converted to

a second-order accurate scheme b% applk img the three-point scheme to modified flux

values ./" [22J:

. ' = .(vj) + (I/A)g7  9j = .(Vj-, Vj, Vj+I)

= ,+,/2 + '7j+1/2 "j+,/1 = (g3+i - 9j) +/2V

where ,\5. The modified numerical flux is

/ -(1/A)Q 11'2) 112

[f (v, + -. (v,+,)J (1.31)

+ (1/(2 \)) 19i + 1,+1 - Q (F,+, + '/1+1/2) "1+,, 2V

10



Lemma 3.2 of reference [221 provides that £cq L31 represents the numerical flux

of a second-order scheme so long as 9Cr) is Lipschitz continuou01s and g, ,,atisfies

g, + g3j 1 I [Q (Flj+. 12) - (F/j1 / 2 )21 A3+ 1/ 2V +O0f2] 1:2

'7j+ 1 /2 "j+I1/2 VU q+ - Q,= (L 2)

1-arten [22] conIstruIcts Y in the following manner so as to satisfy Ec1 1.32:

j Sj+ 1/2 ma1 [o- 1, m11 i~ i2 11/2 -Sj+1/2)J

= Sj+ 1/2 1i11 (1&1+/21 I~i-I2I) Y 11/ j-1/2 0 ) (.33

=0 ( 1/+i2 Yj- /2 0 )

where

1/2 [Q (Fj12 -F+/ (2] .:34)2

Sj+I/2=

Finally, Lemma .3.4 of' reference [221 provides thatacnevtvefnt ifr

ence schemle, with thle numerical flux gie by Ecj 1.26, is TVD under the testrictiomi

of Eci 1.28 so long as Q(x) satisfies Ec1 1.29. Thuis a. second-order accurate ecp

near p~oints of ext rema wvhere sj+1/2 is discontinous), five-point scheme has beeni wi-

structeci for the solution of Eq 1.9. The scheme provides ighd resolution capimimi

of cisconti nui ties and convergeS t~o a lphysically relevant solution.

1. 3.3 Extlension to Syslcws q/fC'ounsu'uiov La iW.5. \WIe now% cOncern) oinl ('s1 .

with extending the scalar schem-e developed in Section 1.3.2 to systems of' cohinsr~a-

Lion laws. Currently, TVI) scheines are only definied foi- scalar' hyperbolic' coinim\ii-

Lion laws or constant coefficient hyperbolic syvstems. This is cflue to the fact 111,11 line

sp~atial to.t! variation of the solution to a& ,,ystem of nonlinear conserxation laws ins

not necessarily a monoton icallyv decreasing function of time [461. Wave interactionsb

may cause the total variation to increase. [larten extends the technique usummg a genn-

eralized version of Roe's aplproximate [Riernannn solvei [22]. The idea is t~o appl\ tLme

schemec in a scalar fashion t~o each of the systemis linearized charactcristh \ariable..



After Hlarten [221, let

be a iiiatrix whose columns are the righit eigenvectorb of the .Jacol)ial mnatrix A4(u)

ini Eq1 1.1. It follows that

where A is the cliagona-l m~atrix of ei genvalutes such that a'006u)S,. Therefore

.$'-ItUf + S- 41u 1  0 (1 .37)

or

S'Illf + A\S-111= 0 (1.3s)

wvhere the characteristic variab~les wv are dlefined such that

tv S i (1.39)

Eq M :S becomes

A1±:w 0 (.0

which can be decoupled Into m. scalar characteristic equations with I < k, <

The most beneficial use ot the characteristic varialIes comes to lighit by- rec-

-001iingtat they can be viewed ab the components, of it in the coordinate s ti

JR') such that [221

k = 3wi?k (~2

k=i

Harten uses this fact to extend his sca.lar scheme to general nonlineat systems of

hyperbolic Conservation laws.

12



Le be tile Component of 3I2 - nhe{l)oriat

system-such that

= ai+1'21?+ 1/2 (I4)
k= i

The scheme given by Ecis 1.30-1.34 is extendedl to gener-al sy~stemb as

v v- A (44n

k. +I/2 V1-12 (l +f d)I

2LEtI R31/2 [4 +I+ ~(+, + -1/2) &'2

kk k

11 = s1~112 nax [0, mil (I! I,2 .-1 p~JI2) 1

-with

=k I [Qk (-k/)- ~I2210+/

1+ 1 /2 "j 1/2 ) /(41/ ((41/2 o

-0 ((0, )

1.3-11 Entropy Enforcemnent. As~ a final Comment. onl the initial development
of Flaiten's second-order TVI) schemeli. we tuil Ii ow to I'he question of ph\ sicall%

relevant solutions for systems of eciuatioiIs. A\s muenitioned In filie pieviou.) wetioii.

tile total variation may not be a mfonotwimj dc I eabirzg functionl of tliie due to v v

interactions. InI adilition, Oclcik's enti up, lueequali t, NiiSIt llysi all I l it. ol

adlmiSSalble, solutions only inl thle limit 1. -- 0. Ill rcahil% we are (oiicem-ried v\ illi

olbtaining aclmissalble solutions onl a. relat i% (,I% coarse ineshl.

131



In order to arrive alt a. proper criterion. 1-I arten exa mitles the( H jenian n initial

value problem [22i for Eql 1.1:

u(X -0) = 6Wx = -rL.1 < 0(I.)

= U~ >>0

with it and UR Satisfying- thle RanlkineC-1-Iug1olliot reClations-' With 11 ~S)MeI .5. If

u~.1) p (x - st) is to satisfy Oleinik's inequality thle numerical scheme miust yield

a. steady p~rogressing -profile with a. narrowv transition froml IIL to Ire [20. 22]. Harten

refer's to tis pr'opertyv as resolution.

It' the solution it(.r 1) x (. - !51t) is inadisisable. thjen the solution is a fan of'

waves [221. This fan of' vaves is a function of' x/t and consists, of a rarefaction, or'
expansin. wav in the samie field as thle initial discontinuity. TFhc ph\ ia slto

requires thle initial discontinuity break up instanltacously, si nce it(x, 1) = 0(.r/t).The
term cn i opy enfr oic ni refers to thle requiienient that thle nu merical schemie lbreak

up) thle initial discontinuity ait a fa-5I r'ate, thus Imitating the physical behavior [22].

The systems of conservation laws under consideration containl two types of
characteristic fields, termed nonlinear and linearly cgenerate b~y 1-larten [221. The

nonllinear fields are dlefined such that aKRk -J 0. while the lincaz lv clegc'erate fiddsN

are defined by (I' R' M 0. Tjge waves of it. nonlinear field ate shock xvawbo eS0 xl)anbioII

WvaVes While thle waves of a, linearly clcgenlerate ficeld are soll Contact. or entrop)y.

diisconiti nu ILies.

To address thle qutestion of erntiolp enforcement. (orvidel the schemec given b\

E1q 1 .26, which has thle effective numerical iscositv coefficient

'0t [o) = 0,cui-(19)

The least dlissip~ative form of 0 is arrived at. bv chloosing" it to be Consist ent with

Eq 1.29 such that

Q(xV) = IjI 1.0

W-ith 0 given by Eq 1-.50, the schemec of Eqi 1.26 canl be rewriuten as [221

n+~ I I



-where

I/- = min(v. 0) = ~(1 - I"1) 1," = max(v: 0) = ~(i + lVI) (.2

-iiaten points, out that the schemi-e of Eqs 1..51 and 1.52 is a gencralization of the

Couranit. -Isaacson. andc R3ce- schemie. which has been thoroughly analyzed inl the

literature. The initerestedl reader is referred to refereomcc [22! for further details.

If the scheme given by Eq~s 1.51 and 1.52 is appllied to the Riemnann p~roblem

-with the Rankie- Hugonijot relation satisfied by letting the speed of piopigatioii be

zero, Eq 1.31 holds the initial discontinuity steady regardless 0of entropx conlsidlel-

ations. In other wvorcl. the initial diiscontinuity is not broken up) and tdhi e ib 110

-entropy elorceliment ill his'case.

The problem is that. the numecrical viscosity vanishes for v = 0. l-arteii elimi-

riates this -piroblcm by modifying 0(.v) = txi near x =0 to be positive. The modifi-

catioh is as follows [22] for 0 < <

Q(r = x (a~(4 2 )) + c lxI < 2c(1:3

- x1 IxlI> 2c

with the entropy correction Iparameter. c. typically of order 0.

F-lai'en sumimarizes the reSUlts of numecrical experiments carried out. % ith the

scheme of Eqs 1.111 and i . IS alplliCd to the Eutler cquatioins for the iemiann piob~i-i..

These experiments used c= 0.05. 0.1, and 0.2.5 for all fields, and also c =0 for the

linearly (legenerate Field. lBabically. highly resolved shocks were obtained fbi all %aluv.s

of c uinder consideration. The contact sunrface was better resolved thaii with the firsi -

order accurate ,chieme of' Eqs 1.51 and 1.52. but, still remained rathei smeared.

T'O prevent, excessive sinemi ill i the I inea rly degenerate field conim fitlie
Contact sur11face. Ilartenl replaces Eq I .-6 iii the linearly, degenei ate field %% it.11 [22j

where is the right. hand sideC of g, given by Eq 1.46 and. gis

S=. max [0, mille.,m ~i.~) (1.55)



'7 j+1/2 '7j+~1/ 2  Q~,1.) 1- (v, ,/ 2)] (1.57)

01 = kli+II2 n1- /2! (KO+1114- + 10-1/21)(I)
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II. I'nviscid Arii~qs

2. 1- L4iti, Equations

Th7Ie Euler equations are statements of the conser-vation laws for mass, Mifleti-
mci- assemin l5~li n inviscid. lnconduItcting' gais. hnteEue

turn, an 'hen. th0ueretdto
ar ara~clsuhtht ,pvp, and c are thc dependent variables tile conservati~e

or divergenice form is obtained. Lax showed that the conservative form of thle Eu-

ler equationls Satisfies the wveak solution of the Rankine-J-ugoiiiot relationis and thub

correctly predicts the jump) conditionis across the shock discontinuity [1, 3.51. hI fact.

use-of the co-serva~ive form is nccessaix 'f i thei discontinuity to relircbent a physical

wave Whlen shock -apuring scheic-s are applied [11. The conservatixe form is often

referred to as the clivergetice form b~ecause thle equations identify thle divergence of

p~hysical quantities. The governing11 equations may- be Nvri1.. inl thle following vector

form:
0 U F(U) ± G(U)(21
at x =0/

wvhere U contains thle dependent variables wvhich are the density. p: x-moientuiu.

pu- y-mrnentum. pt': and total] energy per uinit, volume. e. F contains the flux terms

differentiated wvith respect to x. and cG CoinalS the flux terms differentiated with

respct, to y/. The elements of U, F. and 07 are:

I-t 1?2 + 1
U F G(2.2)

11 MV 112/p +p

L [ (e +L~/ (e + p471/p

whlere 1)), pit and I? =PC. The pres-Sire. p. is given as

p = ;-1) -
2 p(23

for a. thermially and calorically perfect gas.

A general spatial transformation of tile form ~ (.y) and tj i j(x. y) is used

to transform Eq 2.1 from the physical (lonlain (.Y) to thle comp~utationial donut ii

17



(, i). Tile strong conservation law forln of tile Eulem equations i, nuw given by [15

0& U ____ + a L. = 0 (2.4)

U. = gl.I (2.. )

P = (.P + yG) /.1 (2.6)

G; = (,.F + 1,C) /.1 (2.7)

.1 = ,- (2.8)

where .1 is the jacobIia of the transformation.

Since the TVD method used herein utilizes the local-charatcristic approach.

which is a generalization of Roe's alpproximate Ricianmn .oler[36], the .Jacobians .-

and B of F and C are required and can be written as

.At = (1 A + (S13) (2.9)

13 = (A,-- + ,7,13) (2.10)

where

0 1 0 0

= = (Q- )(u +v 2 )"" ',2 (3--) (I-1)r -- v

o 0 i 0

-11". 1' I 0

-1) ('2 + V2) t.2 (1 -1)u (.3 -)' 3 -

18



with- the total eithalpy, H. given Iy

[1= + (:+., 2.1)

The ieiwlems of 1. dlenotedi (4. a2. 01. a").rc

fllu -irei~ +

ji + v - ktc

it + G./

where

The rig'ht. eigenvectors of.(?I ~. are

I 1

It - ' k C Itt

U - ,2C V

Ii - tic- A-vc (i + t''

(2.iH)

1 0

u+ I,c -

c + kc I,'

H + k, ic+ 1.. 'c Jrv - l

where

= + (2.15)
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and

k2 C) (2.16)

The eigenvalues and eigen'ectors of 3 are obtained by rcplaiig in Ecws 2.12

through 2.16 wih q:

l1) -. +IIYV - I~c
q.u + q,t' - !?,c

qH' + I).L

= + I(2.13)

1.01.

it - ite+ ~~. i

= =
v - - c (

H - lieu -L.,-c j(u 2 -v'!)

(2.19J)

1.0 0.0

+ c
t + k.,c I 1.)

iI + k1  uc + k. ,IC c J 1 c - I .2

' = [ " / (+) (2.20)2

k. 
!2.21)

2l Nutmerical Procedure

2.2. 1 i-D Hoe. Lax- I 1citdroff. ai d "T D lqo rilhms. 'hie 1-i) schemes u nIer

consideration are the first order accurate Goduoi -1% pe [221 -dsceme of Roe. referred

i-o as t he R O E scheme: the seconId-orde it cc lra t La. .\\eiId roff-t ? pe s ie iie. .r.e r retd
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Table 2.1. Dissipation Terms for ROIE. IV and ULTIC Schemes

Schcmc Description )issipation (3)

ROE 1st Order TVD ;ff. =

1 +9. 1 l/[+p

IN 2nd Order non-TV\1)/2) ".

i' k- : o k (k+, -, a,, k
I 3 4I2 = -r4 +j i, I I2)~- , # _,)

UIffIC 2nd Order TVD with Eqs 1.54 1.hrough 1..58 applied
to Lie linearly degenerate field

to as the LW scheme: and the becond-oider amxcuiate TVD scheme of Ilarten, referred

to is ULTIC. All three schemes can be writiten in the form

= fitI2)(2.22)

with ithe approl)riate dissipation lerin. from'; Table 2.1.

"2.2. 2-)D llarle,- Ycc l:inilr- I munic .llyorilihm. An upwind TVI) scheme
il finite-volune form [415] is used in the plesenl -inlliv. The grid sparig is denoted

by A C an(d Alt/ such that = jA- and =I \;j. i'lilizing (lie Strang-type fractional

step nlethod allows the scheme (to be impit-nivilcd iii a. local-characte iistic approad

and enisures second-order accuracy:

fl?2E-I. _ _,, ' !.,.L- (2.231

where

. = J. - - .. - 7.k (2.2l



.,, (. : (/. , 6; . 2.2.5)
L~~~ L1,,.:" .. -31

with b =.Al. Application of the entire.sequence of uperators (one itelaiion) advances

-the solution two time levels. The functions l.: and G,&+j are the minerical fluxes

in the 6 and tj directions evaluatedi at cell interfaces. lor instance,+J., in Yee's

finite-volume lormulation is expressed as

[I?)r .u .1",+ .. =7+ CG. + 6;j+I.;.)
• ' " i , ,(2.26)

S J1 J7

-where- the subscript j -+ . is a simil)ified notation for j T k. The numerical flux

=function in the q direction is defined similarly:

G =. (FL + +>1 L- );jL(,k +I) (.7. (2.201

The eigenvalues and eigenvectorb are evaluated at cell interfaces using sym-

metric averages of Ut!., and U .k. ('.L" and 'I, respectively. Roe's averaging

technique for a perfect gas is used herein and iakes the form 1361

Du, I~ + I ~ **

DI/.+. + (2.2)

S II,.k!,, . " i!2.31

-here

p = qt-;7'l,.;. (2.321

Roe's averaging technique is used because it has the comnputational advantage of

perfectly resolving stat1ionary [16t but not necessarilk moving. discontiniiiei.
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fo l quantities and i.J,+. are defined as follows for the finite-volume
formulation2

j 2 -1 1(2.:33)
2 + ('0)]~k

+s I ,7 +(2.34)

22The constants (k1 )J+ and (k2)+1 necessary in determining Rj , Eq 2.15, are

defined as

(k,)j+ = / L 2(23 ,5)
2 V 2 + (L) 2

and

2 -k 2 )j+ =(2.36)
2 2

The vector function 4 +L is composed of elements denoted as (.+) for a

second-order upwind TVD scheme. The elements are given by

, "+,)(4+ + - Q (",+, + + (2.37)

where. with A =

I = A, (2.38)

o+ is lhe di fference of the characteristic variables in the d direction.

Oj+, = R+. ('Il. - L7,.,k) (2.39)

a! +, (au - bb)12
2 -A - aa

- (2.40)

a +L (aa + bb)/2

2:3



*where

2 2 1

CJ+7 LJ

bb =-1 [kjj+.'m - (k1 j+ + k2Vp)+ij + L 2 3  n (2.42)

cc klAj+.I7+ (k.lzj+L- kv 3+L)z.+Lp - k2 A 3 +L M (2.43)

=jL S3 .~.,k - Zj~. (2.44)

The difference of' the local characteristic variables in the 71 dlirectioni is obtained in

Similar fashion:

C)k+:' R7. (UQ.k+1 UijA (2.4.5)

Cy), + L (dd - ee)/2
2-

-+ Zk+'P- (2.16

0, 1((1( + c)/2

kf~f

where

r 2 2]

dd A 1 U.Tk+ k+lL':k 1171 - k+j,~V (.7
~ [Xk4 4 ~2 2 2 2 2

ec -[kAkL)p - (k, Ulk+! + k2Vk+L) k+P+ 2 +nJ(2.48)

2k = 2 / + (250
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(k2)k+)k+ (2.1

k+ = -. k+ -: j.k (2.52)

The function -,+. is given by

= I (~~ =o)(2.5:3)

where

= (x . [Q(X) -7 A] (2.54)

and

Qax) =dJ lxi (Ixl > 2c) (2.55)
2/ (/(,C)) + c (lxi < 2c)

The entropy correction parameter, 1, is generally fixed during comnputatioii , but (a1

vary between 0 and 0.5.

The function gy in Eq 2.37, initially referred to in Section 1.3.2, is termed the

'limiter' function and cam be exprc.scd in a variety of ways [-.]. 'he preseit. ,tmly(i'

bases the choice of the limiter o t lie tN pe of characteristic field under con,,i',,- .tiun.

For the nonlinear fields. altl? ! 0. Ec1 4.341d of Yee [4.5] is used:

= . + Io' I / (oL" + 2,3) (62.)

For the linearly degenerate fields. a'R' 0 . Eq .1.34g of Yee [45] is applied:

Smax [0, mn (2 In'+. '- III 1 l I2S (2.57)

where

= Sg(c ) (2.5,S)

The nonlinear fields correspond to = 1 and I = 3 while the linearly dcgCneral-c

fields correspond to I = 2 and 4 = . It should again be noted that the wames of a
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-nonlinear field are either shocks or rarefiaction %%aves while the wave., of' a 1inear1k

degenerate field are uniquely contact. dibcontinuitie., [22]. Since this is a. five-poinit

schemne, the values of g , are needed at (ell ceniter's just ouitsidle the compu)Ltational

domain. Zeroth-orcier extralpolation is, kied to ubtain the necessary %a hues, follokAinQ

the example of Harten 1221.

2.2.3 2-D Hartenz- Yec- Ciiain-IRuk A-lyorilliu. In addition to the finite-

volume formulation of Yee, a fiiiite-differeiice hormi based on the chain-rule con-

servation form of the governing equiations was utilized [-101:

0(1+ OF(u) OG(C) OF((') a(3U)=0(.9

Previous researchers report that the goX cniiiig eqJuation.s: in this form are more coin-

puitationahly efficient than the strongf) coliset \a l ftonlr Msd inl the finite-volume

approach [40]. This was found not to b~e the case foi- the current TVD algorithms,

tional efficiency.

The local characteristic approach giveni by~ Eq 2.23 is no0w applied to U instead

of U:
tof+2  (2.60)

j.k

where

L jU,k =L;k I -L k4(~.,- (2.61)

LiIk= -..k ~(Q +, L (2.62)

Thl~e nuiuerical fluIxes, F~+ 1~ an it1 11. 1 he liai n rule Conservation for-m1 at re

= j [(.k (F'j~k. + 1-j-1.0) + v G.: C,4 .mk) + JD (263
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-and

=(];",k + P'j,k+1) + (11,)jk (Qjk + Gj,k+I) + ~ '(2.64)

The cianiti ties ( ,),+. (k1 ),+ L. and (k-2 ),- . are defined as follows for the chain rule

formulIation:

=Gj+ , w~ + Vx)i+l.kJ (2.65)

= (&),+I, (2.66)
( X); +± 2

= ( ~ + ((2.67)
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fII. Iriviscid Results arid C'oricusioris-

Chapter III details application of thc I-arten-Yee TYI) ilgoritiuns t~o three

different classes of problems. Rieniann's p~roblemf of gas dynamics is coveredl first. A

shock wave. rarlefaction wave. and contact surface are p~resent, to test the (apabilitv

of the rVD al1gorithmn to resolve the features of both linear and lineatly eenrt

fields. Both H-arten-Yee algorithms degenerate to -artenls ULTI C schemle for this
cascsinc thee areno metric variations. In addcition to thie U T iC' ch(eme, solui~tions

-from the Roe and Lax-WVendroff schemes are p)resented to p~rov'ide the teadler with a

performa nce cornpIarison~.

Steady-state flow through a supersonic cascade of -edges is then examined

uising the I-Iarten-Yee finite-volumne scheme. Both shock and expansion waves are

~present in this test case. Finally, flow through a typicalI transonic tutrbine rotor

is considered This test case is used to demonstrateteclaiitofoh e

fini-e-volume and chain-rule algorithms to deal Nvith transient, btait-upl p~henomnena

in route to a steady-statc solution. lBoundam y and initial conditions utilized for thebe

solution,, ate discussed at length to l)ro\ ide an applreciation of lm% thek oLumplem~eInt

the JAhVSical nlature of the TV\"D schemes.

1. 1 IRicmann*6 Problem

Solution of Riemnann's problem [9] pm oxides a mne(,ams for evaluating1 thle abilikI

of a Scheme to resolve the waves p~resenIt, ill both Ii onfl mica anmd Ilicat ly degenlem at e

fields. The Roe (ROE), Lax-W-endroff (LWV). and UlIC schemles are aljc)j)li (d to

Rieniann's p~rob~lem in ordler to compam thei lpei formanlce. Soluitionls ate comlpared

with those of 1-arten, who utilized the same schemes [22]. as a, check for correct

imnplemientation of thle algorithms.
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Riernann's problem is now% solved for:

(1 0) UL X<0

where

0.44-5 0.5

0.'1928 1.4275(32

These conditions establish a leitward mo~ in- iarefaction wave. tightivaid moving

contact surface. and righitward mioving shock wave. Figuires 3. 1-:3.9 show the results

obtained when the ROE. LXV. and UTIC schemes are applied to this p~rolem. It

should again be noted that ULTIC is thle degenerate form of the t-Iarten-Yee scheme

for the 1- D prob~lem with no metric variation-,. The circles are tile computed Vailes

while -thle solid line delineates the exact solution. The calculations are consistent

wvith those of liarten [221 in that they were carried out to 100 time steps with a CFL

restriction of 0.9.5 using 1410 cells. In adldition. a value of c = 0 was used for the

TVD schernes with Rloe averaging usedI only inl tile LI C scheme. For the one-

dinmensional case. Rloe averaging seems to be of benefit only wvhen accuiate re.Solu(tion1

of the contact surface is desired. and then changes thle result only slightly by 1)1 Inging

le clensi at, the leading edge of the contact surface to its correct value one gi id

p~oint, sooner. Values of c bet ween 0 and 0.253 seem to p~rodluce al most ident h al

results excep~t that c = 0 seemis to enhance thle resolution of thle Conlt n c in

he ( T] (7 soluition. This is consistent with1 H-artens observations. OC rall. Ole

results of this investii-ation seem to bo alniost, identical with those of I lai Leni.

Fig'ures :3.1t-3.:3 show that the first-order ROE scheme provides a fair- resolu-

tion of thle shock, but does rather poorly in resolving 1)0th the rarefaction wave

andc thle contact discontinuity. Note, however, that. tile ROE scheme is TVi) and

hat its tuonotonicity preservinrg propert% prevenits oscillation of the "olutioll at, 1he
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1.00- C

05-Expanision (Rarefactioni)0
0.50 RegionShk

-8.0 -6.0 -. 1.0 -2.0 0.0 2.0 .1.0 6.

Figure 3.1. Density from ROE Scheme Applied to Rienianmis Problem

cliscoflti 1LIi ties.

Figures :3.4-:3.6 show that the performance of the ni-T'VD LWV scheme leaves

11nLIC11 t~o be desired. Not only does the noii-mmoiotoit icity of the scheme cauise se-

Vere oscilkitioiis a( the contact andl shock discoi iti iiui ties, but oscillations are also

occurring at thle tr'ailing edge of thle rarefaction wave. I larten. l a ad Lax [2:3]

[point. out thiat Lax-\Vendroff schemes cant prodluce uozi-phvsical solutions, eveni when

at tei115 are made t~o conlstruct a physically correct, enitropy function.

[Fig-ures :3.7-3.9 clearly dlisplay the i nljroveniletits of the second~-ordler I LTI (

Schemei over the fi ist-order ROE schemie. Ihce resol it oll of the shock. ra refaction

wae and cotitact surface is qjuite goodl. It, should agal in be noted thid., a valu te of'

C= 0 and the use of Roe averaging are iirrljortallt for resolving t11( contact surface

as accurately as possible.

Figurles 3.10-3.12 show the restilts obtaied when ULTI.C is applied to a, dif-

ferenit set: of data, for Rictna-nn 's prob~lem, thle solid Ii tie again represenltig the exact.

:30



THIS
PAGE

is
MISSING

IN
ORIG%..INAL.

TM Ok1
DOCU~ t iN"



1.50j

1.25-

1.00-

0.00

-8.0 -6.0 -13.0 -2.0 0.0 2.0 .1.0 6.0

Figure :3A. Density from LWV Scheme Applied Lo Ricniann's Problem
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Figure .3.5. Velocity from [AV Schemue Applied to Ricemains Problem
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F igure 3.6. Pressure from LINT Scheme Applied to Riemnn's Problem
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Figure 3.7. Density from ULTIC Scheme Applied to Riemann's Problem
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Figure 3.8. Velocity from UUPlC Scheme Applied to Riemanns Piole
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Figure :3.9. Pressure from UUTI7C Scheme Applied to Ricrnann's Problem



1.10-

0.90-

0.70-

0.50-

0.30-A
b

0.10*
-1.1-.5 -0.5 1.5 3.55.

Figure 3.10. Density from UJLTIC Applied to the Riemnann Shock Tube

solution. This data is physically representatLive of a shock tube with

1 0.12.51

U, 0 U,..= 0 (:3.3)

2.50.2.50J

The calculations iii this case were carried out to .50 tine steps undler the CTL restli L-

tion of 0.9.5 with 100 cells. consistent with Ilarten [221. r[he resuilts slmo%% excellent

resolution of the contact cliscontinui-% a., itell as the rarefaction and -,hork ae.

The results appear to be identical with those of Ilarten.

3.2 Boundar-y Conditions for~ lime Inciscid SI idic-s

Aplpropriate boundary conditions. in conj unction with initial conditions and

flow parameters such as Mach numbe~r. are necessary to arrive at the parit i lar

solution of interest. B~oundlary condit ions for both tile sup~ersonic and wiamisonic
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Figure 3.11. Velocity from ULT1C Applied to the Riemann Shock Tube
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Figure 3.12. Pressure from ULTIC Applied to th fliemamn Shock Tube
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cascade flows, to be discussed in forthlcom in- sections. are now (l!scrilbed in detail.

.. .1 [nlet and Exit Boundai-y C'onditions. If the inlet velocity is supersonic,

all characteristics originate upstreamn of the coinpu tational bouiidar% so the four nec-

essary flow quantities may l)e specified. Likewise, if the outflow velocity is: supersonic

all characteristics ori-rinate inside the computational domnain and thle fur JieCV.ss'al %

exit quantities must be extrapolated from Lhc interior. Second-order accurate e.X-

trapolation is utilized in the schemes under consideration.

Subsonic inflow and/or outflow Presents a more complicatedi situation. In ap)-

plying- the boundary conditions at the inlet and exit. of the domain. it i6 assumed

that these boundaries are sufficiently distant from the cascade so that. planar wave

disturbances p~ropagate collinearly with the stream function. The disturbances are

required to leave the comlputational dlomain without reflection, except foi- the re-

flection of pressure disturbances at. the exit. For subsonic inlet. velocities, the inlet

boundarv conditions are arrived at by first assuming that the inlet is p~art of ani

im1aginary duct extending infinitely far up~stream of the cascade. All wa~e~. zadiating

from the computational domain should p~ass tile inlet. Without reflectioll. and coil-

tinue t ravelling up~stream for all time. Specification of a Constant tlieritiodh naii

state at upstream1 infinity rejquires the expansion diblu hance travelling HgPz: rt!;'i to

behave as a simple wave. This behavior allows the application of oiie-dinieiisional

characteristic theory at. the inlet 11.

For subsonic inflow, onily one characteristic run:, from i he interioi of diei dozmaini

towards the computational boundary. Therefore, three qitntiltiv nmust be p[r(ifivil

while ozie mnay be extrapolated from the domain interior. Fai uips! ream, ilt total

p~ressure. pt,,, and total teimperatuire, . are specified. while only ilie inlet flow

anglle. 1321 is specified at the cornpu tational boundary. The speed of somid at thle

inlet.. c2, is extrapolated from ilie dlomain interior. The Riemanji in'ariant along thle
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characteristic spanning the expansion wave from leading to L~ading edge is gix-en by

22

wvhere I/ is the magnitude of the velocity vector. As the velocity vanishes far up-

stream, the inlet velocity is obtained from

=/2 (cc - C2) (:3.5)

which, along with the inlet flow angle, determines it and v. The inlet pressure is

determiOned from the isentropic relation

P2 = Noc 2
2 /(I (3.6)

The speed of sound and pressure fix the state point, uniquely determining the density

and internal energy.

ror- subsonic axial Mlach numbeCrs, simlple-wva-ve theory is also applied at the

exit. The exit is treated as an open-end duct that exhausts into a p)Clenm, requiring

the xitl~lessure t~o match the lplenum p~ressure. Thus, all pressure disturbances

are re-flected b~ack into the coml)utational domain from the exit. Two characteristic.,

extend from the interior of the computational domain to the exit, while one oi ginateb

outside the domain. Thus onlY one quant ity, in this case p~ressure, can be specified at.

the exit All other quantities must b~e extrap~olat~ed from the interioi of the dlomain.

Teqantities chosen for extrapl~oation are enitropy. tangential %velocity. and dhe

Riemann invariant, T h rr densit\ is obtainied from the isentropic relationi

P= (Pli,~l (3.7)

wvhere ,mt is the entropy extrapolated from the interior. The pressure and density fix

the state point. uniqulyVN deterining the speed of sound and intem nal energy. Withl
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the tangential velocity extrapolated from the interior, the axial velocity is obtained

by applying the Riernann invariant in the axial direction:

2

'113 = R1,l - -c 3  (3.8)-y- 1

where
2

,= uL + - 2c (3.9)

and u,,, and c,,,t are the axial velocity and speed of sound at the point inside the

domain where the Riemann invariant is evaluated.

.3.2. Periodicity and Bladc Boundary Conditions. Only one blade passage of

an infinite cascade is analyzed. Therefore, periodicity conditions are applied at cell

centers, or ghost points, located outside the computational domain. These points

are located along the outer boundary and also along the wake cut when a C-type

grid is utilized. For an H-type grid, ghost points are located along the upper and

lower boundaries upstream and downstream of the blade. At the blade surface, the

only condition that can be specified is the requirement for surface tangency. Since

the blade surface is mapped to a constant q coordinate, the normal component of

velocity is given by
II, it + ?Ij V

while the tangential component is

I= It - '(3.11)

The requirement for surface tangency is met by setting

9 = (3.12)

:39



and
I(,,, - -l,,.,(3.13)

where j is the 4 index, 0 represents a ghost point just inside the body, and 1 is the

index of the first cell center above the body. Cell centers and ghost points are used to

place the blade surface along the interface of the grid cell and ghost cell. This mesh

system helps ensure both consistent and conservative boundary conditions [35]. Tile

inverse relation between the Cartesian velocities and Eqs 3.11 and 3.10 then gives

I V3, I !/ +- I2 1 [
The pressure at the ghost points is obtained by applying the normal-momentum

equation at the first line of cell centers above the body [33]:

-P(V-1 + G~V) (qI-u + ijv), = (qXG + 47y)P + (?X+ 7hl)

71, (3.1.5)

Central differences are used for both the and q derivatives.

One additional property is needed to fix the state of the ghost points. In the

present study, an adiabatic wall condition i. chosen to provide this final propert,:

'1;, = 0 (3.1()

Although it is inconsistent with the Eul i: c(i:atiou." to spelci eithei the tempelatu

or its gradient at the )lade surface [35]. in adiabatic wall condition ha, been used

by others [33] and yields results that agree well with theory and experiment.
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Figure 3.13. Grid for Cascade of Wedges

3.3 Cascade of Wedges
Tile cascade of wedges, previously examined by Denton [12] using his opposed

difference scheme, is used to demonstrate the ability of the finite-voluineTVD scheme

to capture well defined oblique shocks. This cascade is shown in Figure 3.13. The

cascade has an inlet Mach number of 2.0 and is designed such that the leading-edge

shock is exactly cancelled upon reflection to the upstream corner, resulting in uni-

form flow between the two parallel surfaces. The grid used consists of 124 points in

the axial direction and -0 points in the tangential direction. Grid points are clutet ed

near the blade surface in order in improve the accuracy of the solution to the normal

momentum equation. used to determine the pressure at the wall [33]. Results weic

obtained using c, = 0.2 for the nonlinear fields and 0 for the linearly degenerate field:.-

The computed pressure contours are shown in Figure 3.14. The shock that forms

at the leading edge is well defined as is the reflected shock from the lower surftc.

Cancellation is achieved at the upstream cornet resulting in the desihed uniform flv,

between the parallel surfaces. This is in sharp contrast, to the authors' expei encC

with the MacCormack scheme which. due to shock smearing, places tile reflected

shock upstream of the corner allowing a weak shock to be reflected back across the

passage [15]. Figure 3.14 also shows the well defined oblique shocks occuring at the

trailing edge as a result of the periodicity condition. This shock structure is simi-

lar to the tramline shock structure [12] that can occur in a transonic turbine roto.
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Figure 3.15 contrasts the exact and computed solutions in terms of Mach number

versus the non-dimensional chord length. Circles and squares denote the numerical

solutions along the lower and upper blade surfaces, respectively. The solid line rep-

resents the exact solution. Unlike most second-order shock capturing methods, the

TVD sheme does not display the dispersive errors, manifested through oscillations

of the solution, that typically occur near points where shock and expansion waves

are generated or reflected [15]. An exact solution for the expansion along the lowei

surface was not presented by Denton, but was computed by the author. Denton [12]

attributes the exact solution to Brown Boveri & Co. of Baden, Switzerland.

3.4 High- t1ork Low-Aspect-Ratio Turbine

The finite-volume and chain-rule schemes were also applied to a transonic rotor

cascade designed by NASA [421. The experimental turbine is a 0.767 scale model of

the first stage of a two-stage, high-pressure turbine designed for use in a high-bypass

ratio engine. This model was tested in the NASA Lewis Research Center's Warm

Core Turbine Test Facility (421.

Figure 3.16 shows the mean-line velocity diagram obtained from the NASA

experiment. In the figure, 1' is the velocity in a stationary frame of reference. IV"

is the velocity in a frame of reference moving with the rotor, and cr is a .onditioni

corresponding to a Mach number of unity. Subscripts 1, 2, and 3 correspond to

the stator exit, rotor inlet and rotor exit resl)ectively. Using the mean-line blade

coordinates from reference (42], an(d the relative gas angles fi om Figu'e 3.16. the C-

type grid shown in Figure 3.17 is constm ucted. The gi id is made up of 177x20 point-,.

again with points clustered near the surface fo inipio\ed accurac in applk ing the

boundary conditions. The rounded trailing edge is replaced by a cusp to prevent

the severe expansion around the blunt configuration. This was found not to be a

necessary requirement on the trailing edge geometiy, and solutions weme obtained(

for a grid where the rounded trailing edge was left intact. Points are also clustered
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Figure :3.14. WVecge Pressure Contours
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((J/crp = 0.638

Figure :3.16. Mwean-line Velocity Diagram

Figure :3.17. C-type Grid Used in the Present, :nalYsis



at the leading and trailing edges for improved resolution. 21 points are placed along

the portion of the C-type grid representing the inlet.

The inlet and exit condions necessary for input to the code are derived from

the NASA test data [42] given in Table 3.1. In the table, t identifies total properties

and R denotes a frame of reference moving with the rotor. Conditions at station I,

the stator exit, are taken to be the conditions also existing at station 2, the rotor

inlet.

Consistent with subsonic inflow at the computational inlet, the total pressure

and total temperattfre in the quic.cent rcgion infinitely far upstream of the casca'de

are required as boundary conditions. The values used are pt,, = 29.32 x lO N/112

and T,,,, = 420.2K. The static pressure at station 3, the rotor exit, is input as the

exit pressure. In particular, p3 = 12.0.5 x 10'N/77 2.

3.4.1 Numerical Soliltioi.. The initial conditions applied for the present study

are referred to as "cascade tunnel start conditions because of the analogy to the

starting of a blow-down cascade tunnel. The domain is initialized a.t zero velocity.

the pressure and temperature corresponding to that in the quiescent region upstiean

of the inlet. This is analogous to placing a diaphragm at the exit of the computa-

tiona.l domain. At time to, the solution is tarted and a centered expansion wae

propagates upstream. It is also po.sible to place the diaphragm anywhere in the

conputational domain, but placing it at the exit avoids the formation of a contact

surface that must pass through the donmain. While the present T\D .,chcme ha. ,

demonstrated the ability to resolve si I a conlact. surface in very fine detail. con-

vergence is slowed clue to the fac that IOe contact urface plrogresbes t hrough the

domain at the convective velocity.

When the cascade tunnel start is used and the diaphragm is pla,-d at the exit. of

the computational domain, a centered expasniol Waxe propagatc: upsteam through

the blade passage and towards the inlet. A! Ihe leading edge of the expansion

.15



Table 3.1. NASA Turbine Test Data

A = 1.4 Ratio of Specific Heats

Tt= 422.2 1K Inlet Total Temperature (Absolute)

Pt, = 31.03 X 101 !N/fl2  Inlet Total Pressure (Absolute)

Pt,/P2 = 1.704 Inlet Total to Static Pressure Ratio (Absolute)

ptR/p.= 1.652 Inlet Total to Exit Static Pressure Ratio (Relative)

pt,/pt' = 2.360 Inlet Total to Exit Total Pressure Ratio (Absolute)

('//C)2_ = 0.888 Inlet Critical Velocity Ratio (Absolute)

/.3 = 0.,1 Exit Critical Velocity Ratio (Absolute)

(l'/I'V/W) 2 = 0.381 Inlet Critical Velocity Ratio (Relative)

(.'Iq'/%1,.)3 = 0.841 Exit Critical Velocity Ratio (Relative)
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wave reaches the leading edge of the airfoil, circulation is established around the

blade through the shedding of a starting vortex from the airfoil. Since vorticity is

related to the entopy gradient per Crocco's equation, entropy contours can be used

to highlight regions 6f vorticity. Figure 3.18, a plot of the entropy contours after

1000 time steps, clearly shows the starting vortex that has been shed by the airfoil.

The vortex is convected downstream and eventually exits the computational domain

without being reflected. Figure 3.18 also provides a graphic representation of the

periodic behavior in a cascade flow.

Steady-state solutions obtained with the finite-volume TVD formulation corn-

pares extremely well against the experimental mean-line data. Computational data

is given in Table 3.2 for a C-type grid with 3.57 x 40 points. Grid spacing is roughly

half that of the grid shown in Figure 6.-42 and is utilized in an effort to verify the

location of the stagnation point at the leading edge. Since the stagnation point is

determined by the circulation around the airfoil, the entire grid was refined rather

than just the area in the vicinity of the stagnation region. Computed values are

compared against experimental values through the percent difference:

%Diff = ( x 100 (3.17)

When the solution process was performed using the chain-rule formulation

no noticeable difference in the computed quantities wab observed. This level of

agreement provides an excellent argument for the use of TVD schemes in computimg

transonic cascade flows.

3.5 Conchsions Based on. lnviscid ln ,estiyations

TVD schemes, because of their foundation in the mathematics and physics of

hype,'bolic conservation laws, are clearl superior to the widely used Lax-Wendroff

family of schemes that solve the partial diffeiential equations without regard to



Figure 3.18. Entropy Contours Showing Starting Vortex
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Table 3.2. Computed Versus Experimental Data

Quantity Experiment Computed % Difference

PI2,/P 3  1.652 1.643 -0.51

Pt3 R 18.64 x 10"N/rn 2  18.98 x l0"lN/m 2  1.82

(W/'lIr)v 0.381 0.383 0.52

(0/f,1'C) 3  0.8,11 0.853 1.A3

Exit Angle, .P3 -66.500 -66.750 0.38

selecting the physically meaningful particular solution. The superior performance of

TVD schemes in resolving rarefaction waves, contact discontinuities. and bhock wa% e.

was demonstrated using Riemann's problem. Solutions for both supersonic and

transonic flows exhibit greaty improved resolution over second-ordeli Lax-\\enduff
type schemes used previously [15, 161. Solutions also compare favorabl3 with, the

available experimental and analytical data.

One important improvement not mentioned previously is that the downi.rlbrii

periodic )oundaries for the turbine analysis do not have to be treated as ,ol(d .,al.,
at any l)oint during the solution process. Previous experience of the autho and

others [15, 16, 38] showed that numerical difficulties are encountered with the .i,,n-

Cormack scheme if the cascade tunnel start is used. The downstream boundaries had

to be treated as solid walls until the solution evolved to a point where the fio be-

cane aligned with the channel. No such difficulty has been observed with eithci ie

finite-volume or finitc-difference TVD schemes described in Sections 2.2.2 and 2.2.3.
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One observation should be made regarding grid cell skewness. While no adveise

effects due to varying aspect ratio were observed for either the finite-volime or finite-

difference formulations, excessive cell skewness in the turbine cascade grid led to a

rather high degree of entropy production. This appears to be unrelated to boundaiv

conditions since the production was most noticeable in the interior of the domain

above the suction surface, where the grid tended to be most skewed. Reducing

to 0 tended to alleviate the problem, suggesting that increased c values tend to

magnify the effect of numerical viscosity" generated by cell skewness. The problem

was observed with both the finite-volume aid finite-difference formulation., although

the finite-volume formulation tended to enhance the production of entropy. When

the skewness was reduced, no noticeable difference! in the solutions using either

formulation were observed. No significant v,triation in the solutions is observed for t

values ranging from 0 to 0.4 in the nonlinear fields, so long as skewness is kept to a

minimum. A value of = 0 was consistently used for the linearly degenerate fields.

CFL numbers as high as 0.95 were consistently used to obtain steady-state

results. In fact, the CFL number was dropped to 0.5 only if a contact surface was

in the vicinity of the rounded trailing edge of the blade. At all other times the CFL

number was maintained at 0.95. This is in contrast to CFL numbers as low as 0.2

required during startup and onld as high a s 0.S to maintain stability when using the

MacCormack scheme [1.5. 16].

The data processing rate is 1.2425 x 10-' seconds per grid point per lime level

for the chain-rule formulation, and 1.2271 1 Y 10' ,)econds per grid point per time leel

for the finite-volume formulation: the pio e.ing rate refers to the CR.\Y N-MP/I216

computer. The solution is monitored util talculations consistently .,how less tala, it

0.02% chai!ge in the total energy. The time dependent solution is then considered to

have asymptoted to the steady-state solution. A typical, time-accurate calculatioi

requires approximately .1000 operator ,weepb to achieve steady state 0on'-eiec.

This translates to approximately .5.8 minutes of CRAY X-MP/216 (P" time foi the
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177 x 20 grid. When a local time stepping procedure is used, approximately 2000

time steps are required to achieve the same level of convergence. Thu the CPU time

is reduced by a factor of two. A description of the AVEC routines is presented in

Appendix B. Appendix B also summarizes the results of the CRAY FLO\TRACE

option used to obtain a relative performance evaluation of the routines.
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IV. Introduction to Part II

4.1 TVD Schemes qnd the Navier-Stokes Equations

Soon after the i',,oduction of the TVD methodology by Harten [221 the scheme

began to be applied to the Navier-Stokes equations. The earliest application known

to the author was by Chakravarthy et al. [7] in 1985, followed by MNller [32] in

1989, Riedelbauch and Brenner [341 in 1990, and Lin and Chieng [25], Seider and

HJinel [39], Prd Josyula, Gaitonde, and Shang [241] all in 1991. All these investigations

dealt exclusively with the steady-state problem. Numerous other researchers have

undoulbtedly applied the TVD methodology to the Na.vier-Stokes equations, but the

author is mainly aware of the above efforts. Most of the effort has been directed

toward the investigation of hypersonic flows, but Lin and Chieng and Seider and

H~inel have investigated the transonic regime through solutions of the thin-layer

Navier-Stokes equations.

The present effort is an attempt to extend the applica.tion of the TVD method-

ology in two directions. The first direction is the calculation of unsteady flows. where

the time accuracy of the scheme is important. The second direction concerns flows

where complex wave pheomena are present, but are relatively weak compared to

those of previous investigations. A primary assu1ption of previous investigations

is that the flows are dominated by inviscid effects: moderate or stiong shock waxes

are present in the flowfield. This assumption allowed investigators to conuclude that

solutions far away from the boundary-layer arc accurate. c\cn though the effect. of

the TVD dissipation terms on the true viscosit3 in the boundary layer remailed un-

known [45]. Seider and Hinel were the first to investigate the effect of this dissipation

on the boundary layer and the present work attemps to extend this knowledge.
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4.2 Overview of Part II

The present effort is primarily concerned with the development of an algorithm

capable of analyzing laminar flows with boundary-layer separation and heat transfer

induced by both steady and unsteady shock waves. Several algorithms have been

developed that are reasonably accurate in predicting pressure distributions for the

laminar shock- boundary-layer interaction problem. To the author's knowledge no al-

gorithms, other than those developed herein, currently exist that accurately predict

skin friction coefficients in the interaction region or the correct sepaiation and reat-

tachment locations. Similarly, no algorithm is available that accuiately computes

local heat flux for even the simplest geometries when shock waves impinge upon the

boundary layer.

To accurately compute the complex flow structure of shock-induced boundary-

layer separation, or compute accurate heat flux levels, the algorithm must provide

for high resolution of the complex wave systems and maintain the proper physica.l

behavior of the problem under consideration. TVD schemes, which lend themselves

to limited, but extremely rigorous, analysis provide the best foundation to build

upon. Although developed for the solution of scalar hyperbolic conservation laws.
rVD schemes perform well on systems of hyperbolic equations, such as the Rieniann

problem analyzed in Part 1. The T\D methodology is adapted herein t.o provide

accurate solutions to the para.bolic Na.vier-Stokes equations.

Part 11 begins with the casting of the Navier-Stokes equations in conservative

form. after which the system is linearized. Two versions of TVI) algorithms, the lst-

Order AIT TVD Navier-Stokes ("ode (ATNSC'I) and the 2nd-Order AFIT TVI)

Navier-Stokes Code (ATNSC2). are then developed. Both algorithms aie ext.ensions

of the Harten-Yee inviscid algorithm outlined in Section 2.2.3. ATNSCI is formally

first-order accurate in time. second-older accurate in space. ATNSC2 is formally

second-order accurate in time and space. ATNSCI and ATNSC2 are first applied,

along with a Lax-Wendroff algorithm, to the viscous Burgers" equation as a test. cas.e.



This test case illustrates the superior performance of the ATNSC schemes, as well as

the necessity of utilizing the fully second-order ATNSC2 algorithm for low Reynolds

number flows. The ATNSC algorithms are then applied to the solution of the shock-

boundary-layer interaction problem. Computed solutions are compared with the

experimental data of Hakkinen et al., and with solutions obtained from Visbal's

Beam-Warming algorithm [47], in order to illustrate the superior performance of the

TVD based algorithms.

The ATNSC' algorithms are next applied to the problem of unsteady shock-

induced heat transfer. Solutions are compared with those obtained from Visbal '

Beam-\,Varming algorithm, the theoy of Mi,'els [30], and the experimental data of

Smith [-1]. ATNSC solutions are shown t.o behave in a physically correct manner,

providing extremely accurate solutions. The Beam-Warming algorithm allows the

formation of nonphysical waves, including expansion shocks, for this test case.

Finally, conclusions arrived at from the current investigation are summarized.

Suggestions are also given for further research involving use of tile ATNSC algo-

rithms.
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V. Viscous Analysis

5.1 Navier-Stokes Equations

The conservative form of the Navier-Stokes equations is written as

9U oF(U) +OG(U) = OF(U,U,U) +OG(U,U,U) (5.1)
7t+ a + '9Y '9x +Ot Ox O xO

where U, F, and G are the same as for the Euler equations, Eq 2.1. F, and G, are

the viscous flux terms, given as

0 0

F = G = Tx (5.2)

U'T + V*x - qx uTxy + v',y -qy

*'xx, rxy and Ty are the viscous stresses:

= t (uY + V.) (5.3)
,r,,,= (211 + A)v., + Aux

where P and A are the first and second coefficients of viscosity respectively. The first

coefficient of viscosity is determined using Sutherland's formula [11;

T= / (5-4)

where C, = 1.458 x 10-6 kg/ (m . s, V.) and C2 = 110.4 K. The second coefficient

of viscosity is given by
A

B = 2 +- A(5.5)
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where B = 4/3 yields Stoke's hypothesis, A = - 2 /3p. Solutions were also arrived

at using B = 2, based on Sherman's work as reported by White [49]. No difference

was observed in the numerical solutions using B = 4/3 or B = 2.

The quantities q. and qy are components of the heat flux vector, q = -kVT.

The coefficient of thermal conductivity, k, is determined from the Prandtl number,

Pr:
Pr = jC (5.6)

k

with Pr = 0.72 for air.

The equations may be written in linearized form as

Ut + AU. + BUy = A 1U. + B 1 Uy + A2U.. + B2 Uyy+ (A3 + B 3) Uy (5.7)

where the viscous Jacobian matrices are

A1 = aF/8U A2 = oF /OU A 3 = r/&Uy (5.8)

Bi = 8G/o9U B2 = &G,/8Uy B3 = OG /8U

with the individual terms given in Appendix A.

A general spatial transformation of the form = (x, y) and 77 = 7(X, y) is used

to transform Eq 5.7 from the physical domain (x, y) to the computational domain

u, + Au + Bu,, = AU + BAu, + ; 2  + B2u,7,, + (A3 + b3) u,, (5.9)

where

A = ., +XA ,B

A A j + , B (5.10)

A2  A2 + ,2B2 + .6, (A3 + B3)

A3  .7yA 3 + xB 3 + x + B5
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and
B= .,A+ vB

B1 =  77xdl + 7yB, (5.11)

f 2 = /A2 + 772B 2 + 7 7(A 3 + B3 ) (511

B 3 = .77yB3 + 6y?7xA 3 + 6xixA 2 + 6yllB2

5.2 Numerical Procedure

5.2.1 1st-Order Time, 2nd-Order Space Algorithm. A first-order time, second-

order space, upwind TVD scheme is now presented for the Navier-Stokes equations.

Based upon the excellent results achieved in the inviscid case, a chain-rule formula-

tion is utilized. The scheme for the Euler equations , described in Section 2.2.3, is

second-order accurate in space and time. Taylor series expansion shows the scheme

is a representation of

U, + .F + 77.F7 + GG + 77YG = [-U, + A'u + (Ab + AA) U,

+2u,7,] + 0 [At2, A , A772]
(5.12)

and is second-order accurate for the Euler equations, since

U, = A2U + (A + BA) vu, + B2U , (5.13)

Viscous terms are added to the Euler scheme, Eqs 2.61 and 2.62, using second-

order accurate, central-difference approximations:

,chU5 = Uj', A' nh  n +,-F_,J-Atp (5.14)

,U, U.k - ( + - G L) + At'F; (5.15)
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where Fand Gare given by Eqs 2.63 and 2.64. The viscous terms, qI' and T,,, are

q! ((~~ (Fj ( I,;.- - F-,I+ (6y)j~ (GvI+ , - j IA (5.16)

and

q/ 77 [(7) (F,k+1 - lv,,k-1 ) + (77)j,k (GVI~k+l - Gjk,] (5.17)

The scheme given by Eqs 5.14 through 5.17 is a representation of

Ut + c xF 7~ + yG + ijyG,) = F, + 7hFv, + 6yv + nly~lq

T~ [_U,, + A2m4 + (Af3 + f3A) Un,

±2 U,7,J + 0 [At 2, AC2 , A172]

Examination of Eq 5.9 reveals

+-l & + b 2B1~ - bt 2 - b 2B3) U1777 +t271

+ (b3f~l + B1BJ3 - b 3B§ - bb3 + b1 A3 + A3B31

-B3A 3 - A3b + B2A1 + AIR32 -Bf 2A - -Af2) U 11

+ (A + kkB + b 2A3 + ;13 &2) UC,,

+ (32+ A3 + AAB + f 2 ;12 + AAB + B33A3) UC ,

+ (A3A1 + AA 3 - A3A - AA-3 + Ai3+ b3A1

-AR 3 - B33 A + A2B1I + &1 ;12 - A2 B& - B3A 2) U~o

+ (A2A3 + -A3A2 + A2 133 + b3 A2-) umn

(A1A2 + A2A1 - 1iA2 - A2A) 2~+(.9
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Since the term of O[At] in the truncation error of Eq 5.18 does not vanish upon

substitution of Eq 5.19, the scheme obtained by adding central-difference represen-

tations of the viscous terms to the Euler scheme, Eqs 5.14 through 5.17, is first-order

accurate in time and second-order accurate in space. This new scheme represents

U t + + 2 hF,, + 6 + 7NyG , = + 77F ,, + 4 + 7 7 (5.20)

+0 [At, A 2, A772]

This first-order time, second-order space scheme is hereafter referred to as ATNSC1

which is shorthand for 1st-Order AFIT TVD Navier-Stokes Code. A description

of the ATNSC1 routines is contained in Appendix C. Also included is a relative

performance evaluation of the routines, obtained using the CRAY FLOWTRACE

option.

5.2.2 2nd-Order Time, 2nd-Order Space Algorithm. All known TVD solu-

tions to the Navier-Stokes equations, prior to the present effort, have implemented

the viscous terms in a manner analogous to that of Section 5.2.1. A second-order

accurate, upwind TVD scheme is now developed for the Navier-Stokes equations. As

previously mentioned, the scheme for the Euler equations is second-order accurate

in space and time and is a representation of Eq 5.12. Utilizing the fractional step

method, consider a scheme of the following form for solution of the Navier-Stokes

equations:

un+ Ih I k (5.21)

where

t= - ( +,k+j-k)+

~At2 "2
AtAb + --- 2 A2 Uk + At'Ipn (5.22)
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and

At ^ 2A77~ 2 '2

= (- AtfS7 + 2 U .. + At,; (5.23)

where h = At. The numerical viscous flux derivative, I, is the representation of the

viscous derivatives terms plus terms necessary to cancel any first-order truncation

error. Above, 611 represents a second-order accurate (centered) difference approxi-

mation of the kt" derivative with respect to 1. The functions Fj+ 1,k and GIk+L are

the same numerical fluxes as for the Euler equations, Eqs 2.63 and 2.64.

C'U provides a second-order accurate solution to the one-dimensional equation

2A + At2U + 0 [At 2 ' 6
At 2 + [Lt,,v;]  (5.24)Ut + Auc = O - Tujt + 2 A uC (5.24

while I2hU provides a second-order accurate solution to

Ut + BU-q = 0,- yUt + -B +0 A (5.25)

In the two equations above, V) is the exact representation of the viscous flux deriva-

tives plus terms necessary to cancel any first-order truncation error.

Subtracting selected viscous terms from the two equations above gives quasi-

one-dimensional forms of the Navier-Stokes equations on the left-hand sides:

U, + AU - AUC - A2U - A 3Uo,, = - A2U (5.26)

-UC- A2 U C -W,

b.3 U j = ?,7 I t L2U77
U+t+ .7 "2" (5.27)

-BIu- B2U,,, - BWU,,
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The objective is to select 4 such that the right-hand sides of Eqs 5.26 and 5.27

equal zero, yielding the quasi-one-dimensional Navier-Stokes equations:

U, + AU - A1 U - A 2 Ut - A 3 U, = 0 (5.28)

Ut + BU, - BIU, - B2U,, - B 3 U, = 0 (5.29)

Examining the quasi-one-dimensional Navier-Stokes equation in the I-direction gives

U t, = (A )A ),AA + A ) u

+ (.%,2 + A2AI - AA2 - A2A) u +

+ (A A3 + A3AI - AA3 - A3A) uC,

+ (AA + A3A2) , + A3U ,, (5.30)

Substitution of Utt into Eq 5.26, and setting the left- hand side equal to zero, yields

-F, Atr/ 2  A \
+t " [A IA, AU,

2 1
+ (A A2 + A2AI - AA2 - A2A) u + 2iu

+ (AIA 3 + A3A1 - AA - A3A) U -

+ (A2A3 +,A3;12) u , +A2Ut~1' (.5.31)

Similar manipulation of the it-direction equation gives

8 OG + At 10 2

877 2 L

+ (b 3 + i3 - bb 2 - b3) u +,,

+ (& + b3b2) u,, +4uo] (5.32)
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Applying the fractional step operators, as in Eq 5.21, with the numerical vis-

cous flux derivatives given by

S~,,+ P -iA)s

+ (A2 + A2A1 - AA2 - A2A) + 2

+ (AIA 3 + A'3A - AA3 - A'A) 6s

+(2A3 + A3A2) 6, +A36ti] U (5.33)

and

A t f 2) ,
T + (,?G, + 2 1- BBI- Bb . + 7

+ (blf32 + t 2tl - BRf2 - b 2b) 7~ +A27

+ (f~1f3 + tb3 3 - bf33 - B3 b) 64,,
6 4 2 b4C''

(b~l§3 + b 3f32) 1771 +b3, U (5.34)

results in

U-2 C h h h  L h
()

+ 2 I RB2  _ B2B) 6, +[ + f b~I b 6 f2 ,

+ (fU2 + b1 bl - bf3 - B b + Bt, 3 + 3 1

-N 3 - A3b + -&2 ; 1 + AAR - b 2A - AB 2) At ,,

+ ( b3 + B;12  +BA
+ + A + b2 ;12 + A3B53 + f 3 3 ) A

+ (;, 3Ai + A;13 - A3A - AA 3 + A1B3 + f3A1

-Ab 3 - b 3 A + ; 2 l + b - ; 2b - 1 )
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+ (A2A3 + A3A2 + A2R33 + R33A2) At6vs ,

(A1A2 + A2A1 -AA 2 -A2A) 2t~+ALt~}U~

+0 (At3, A 2, A772) (5.35)

The above scheme is a second-order accurate representation of

uI + -AUC + f3,- AIU - i3U,- A2UCC - f3U77- (A3 + B33) u7

+ (Alb-u, + +~A l I - fi 3, b+f3)U7

+ (f 2+ R32R1 - fbR2 - B2R) U,7n + 2U,7n

+ (bl+ R1 3 - f 3 Rf -Rbf 3 + R1 ,A3 + A3t 1

-BA 3 -A 3 B +B 2 A 1 +A 1B 2 -B&2 A --A 2 ) Ul

+ (A+ b3112 + f 2;13 + A3B32) U4,,,

+ (~ A +A2.32 + b22+ Ai3b3 + b3A3) u07
+ (A3A1 + A1A3 - A3A - AA3 + ;Ilk 3 + ?A

-AfR3 - b 3A + A2B1 + b2- ;12f3 - N 2 ) UO

+ (A2 A3 + A3A2 + -A'A + b&A2) Ut

+ (A 1A2 + A2A1 - ;1; 2 - A2.1) U C + A2UtIC (.5.36)

Examination of Eq 5.9 reveals

+ (A + & A, - Af3- b A1  Ab& - A A + Aib + f3A) ut.,,

+ (fU2 + f3213! - 1312 - b2b1) u1, + b
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+ (bA + - - + +A3 -

-BA 3 - A3b + B2AI + AIA - 2 A - Ab 2) u,

+ (b2 f33 + f 3 BP2 + R 2A 3 + AA) QC,

+ (f33 + A+ A2A2 + b2; 2 + AA + b3; 3) UC,

+ ( A3A1 + AlA 3 - A3A -AA 3 +A 3 +Bf3 A1

-A 3 - 3A + AA + BIA 2 - A2b - BA 2) ua

+ (A2 A3 + A3A2 + A*333+ b 3A2) umn

+ A2A _~ AAu

(AlA2 + A2 ,A - -A12 - A2A ) UC + A2UC (5.37)

Upon substitution of Eq 5.37 into Eq 5.36, the right-hand side of Eq 5.36 be-

comes 0 [At 2, A 2, A 2] and a second-order accurate algorithm is assured. Thus,

the scheme given by Eqs 5.21-5.23, 5.33, and 5.34 is a representation of

(5.38)

+0 [At 2', A 2 Aq2]

This scheme is hereafter referred to as ATNSC2, which is shorthand for 2nd-Order

AFIT TVD Navier-Stokes Code. A description of the ATNSC2 routines is contained

in Appendix C. Also included is a relative performance evaluation of the routines,

obtained using the CRAY FLOWTRACE option.

5.2.3 Beam-Warming Algorithm. The implicit Beam-Warming algorithm as

implemented by Visbal [47] is used herein as a comparison against the solutions

provided by ATNSC. The scheme solves the strong conservation form of the Navier-

Stokes equations. The scheme is written in delta form as

+ , &, [~j 2.,j, j 1
jfn + ,2,z f8.InjO2 An&1+,to0 2  O Jj J 1+o2 Lay aJy (5.39)

~ [ 8 j )n + ~ &- + 0.& (2.A/n P," + a An-
1+02 1+02 O6
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where

A-0= & + 
- On (5.40)

and
F1  = (&F .+ CG ) /J d,,, (nF1, + ,7,G ) S (5.41)

A",  apdF,/90CB ,

F1, and , are evaluated from

ft (U , U U) = r-,, (U, Ut) + r',2 (U, U )

d- (U, UC, U7) = C., (U, U) + d'1(U,2 AU)

For steady-state calculations, first-order accurate Euler-implicit time differencing is

utilized by setting 01 = 1 and 02 = 0 . Second-order time accuracy is achieved by

setting 01 = 1/2 and 02 = 0 to obtain a trapezoidal time differencing. Trapezoidal

differencing is used for all computations where the a time-dependent solution is of

interest. Eq 5.39 is implemented using second-order approximations for the spatial

derivatives.

To maintain numerical stability and provide smooth solutions, explicit fourth-

order damping is added to the right-hand side of Eq 5.39 as

,,AtJiI U1 .j (5.43)

and
w2 -I J'6,iU/.i (5.44)

Implicit second-order damping is inserted with respect to the implicit operators as

- 'At.7I ,'S1..,I (5.45)

and

-Wa s,.I:: , E . 0 (.46)
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In Eqs 5.43 through 5.46, 61" is a second-order accurate, central-difference operator

used to approximate the kt derivative with respect to 1. The nominal values of the

damping coefficients are [27]

= 0.02 w? = 0.04 (47)

w7 = 0.25 w = 0.25
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VI. Viscous Results and Conclusions

6.1 Burgers' Equation

To provide a performance comparison, the Lax-Wendroff and ATNSC schemes

are applied to the linearized version of the viscous Burgers' equation

lt + cit, = i1u,. (6.1)

with periodic boundary conditions

it(O, t) = u(2-r, t) (6.2)

and the initial condition

u(x,O) = csin(kx) (6.3)

Eq 6.1 has the time-dependent solution

U(x. t) = ce- k2 t sin[k(x - ct)] (6.4)

The equations can be non-dimensionalized using

x = kx

U = I/c (6.5)

to obtain
ittt+ -, = (I/ Re)

L(X.0) = si.. (6.6)

U (xt) = e-(/I)Lsin (.- 1)
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where

Re c/(jtk) (6.7)

Rather than perform a stability analysis for the ATNSC scheme with thle vis5cous

term added, the exact stability condition for the Lax-Wenciroff method is used [ii.

In non-dimensional form this limitation becomes

At < -(1/Re) + j[(tIJeY2 + GEL (.Ax )2 J(6.8)

Figures 6.1 and 6.2 show the results obtained using first-order timle accurate.

I= (I/Re)u. versions of the Lax-Wendroff and ATINSC schemes. This is similar

to the method used in the implicit application of' T\'l algorithms to viscous edlua-

tions and is utilized herein to clemonstite the necessity for seconcl-order accuracy

at low Reynolds numbers.

Solutions are initially computed under a CFL restriction of 0.80 with Re

10000 using 49 (Case I), 99 (Case 1I). and 199 (Case III) cells respectively. The

solution was carried out to I = 56.66.5 . Figutre 6.3 shows the same schemes under

a CFL restriction of 0.95 and Re = 10000 using 1l9 cells only . The norm givenl with

each p~lot is defined as

INA - L11 = Ax IL, - L1) (6.9)

Uis the exact soIlution of Bcj 6.6 shown as the solid curve in the figure-s.

Figure 6.1 shows that the LaxWido[shiexiisaphaseshift for Ca.,( 1.

which diminishes as the number of Cell." is iiicrea.,ecl. Given thle smooth initial dalta of,

Bcj 6.6, the overall performance of the Lax- Wendroff scherne is iatlier'good. 1lowexcr.

the p~hase shift associated with the Lax-Wenlr1off, scheme does no0t appeal withl the

ATNSC schemes.

Figure 6.2 shows the results obtained using the filst-ordler ATNS(' schemev. The
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majority of the error is concentrated in the areas of rapidly changing gradients. Note,

however, that the ATNSC norms are smaller in every case than the Lax-Wendroff

norms.

Figure 6.3 shows the effect of increasing the CFL restriction to 0.95 for the

two schemes. The increase in the CFL (or Courant) number tends to lessen the

phase shift associated with the Lax-Wendroff scheme, while allowing the computed

solutions of ATNSC to more closely match the exact solution in the regions of rapidly

changing gradients.

Figure 6.4 displays the results of a second-order version of the ATNSC scheme

applied to Eq 6.6 at Re = 10000. Second-order accuracy is arrived at through the

use of

,X' (i/Re)It - _Re lta:. + " -.=(6.10)

which- is consistent with Eq 5.31. A CFL restriction of I was used with no observed

difficulty and the norms were between one and two orders of magnitude lower than

either of the first-order schemes.

Results of a more severe test of the first-order version of ATNSC are shown in

Figure 6.5. The first-order algorithm was applied to the viscous Burgers" equation

with Re = 100 and I = 25. The lower Reynolds number represents an increase in

significance of viscous forces over the previouis case. The figure clearly shows the

degradation of the solution near tile extrema. as \\ell as snmall o.scillations present in

the solution. The CFL number had to be reduced as spacing was reduced in order

to maintain stability. In fact. the C'FL nuinl)ers used were apparently on ilie edge

of the stability limit.

Solutions using the second-order accurate version of ATNSC for Ie = 100 are

shown in Figure 6.6. The solution is crisp near the peaks and is free of oscillations.

The norms are an order-of-magnitude lower than those of I-he first-order scheme.

Finally: the second-order scheme was utilized with a CFL number of I for each cell
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size. The results, shown in Figure 6.7, are indistinguishable from those of Figure 6.6

except that the increase in CFL number further decreased the norms.

Overall, all the first-order schemes perform rather well for the viscous Burgers'

equation with periodic boundary conditions, smooth initial data, and high Reynolds

number. However, the Lax-Wendroff solution can be expected to show the same type

of oscillations as for Riemann's problem if smooth initial data is not specified. It

should also be noted that the first-order TVD scheme performs best when the CFL

restriction is as close to I as possible.

The situation is not so favorable for the first-order TVD scheme at lower

Reynolds number. The first-order scheme exhibits decreased accuracy and severe

stability restrictions. Thus the first-order scheme is wholly unsuited to the calcula-

tion of unsteady flows at. low Reynolds numbers.

The behavior of the second-order TVD scheme is very encouraging. Accuracy

is superb and the scheme is very robust where stability is concerned. CFL numbers a.

high as 1.1, in relation to Eq 6.8, were tested with no instability. The Lax-Wendroff

time step limit ation given by Eq 6.8 is obl iously somewhat over restrictive in this

case.
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6.2 Boundary Conditions for Viscous Flow

Boundary conditions for viscous flows are, in general, more straight forward

than their inviscid counterparts described in Section 3.2. At the wall, the inviscid

surface tangency condition, Ecqs 3.11 and 3.10, is replace by the viscous no-slip

requirement:

U =-0 (6.11)
v-=0

Simplified wall temperature con.itio.s representiig either an adiabatic wall

T... = 0 (6.12)

or constant teml)erature wall

T =C (6.13)

are used in the current study, depending on the flow of interest. With the wall

mapped to a constant 7) coordinate, the pressure at the wall is obtained by solving

the normal-momentum equation:

pi 11 1q. +1112 = V-1 + G 110) 1k + X+ 1192) 1)n

= (Gut + 16),,,,) {i . +,

+11 [ , (, (/ + + A)4q (2p + A).,] (.1 11(6.1-1)

+ (VIt + 71,i',,) {,I. (1, + Il/1,17) + iY (GN/u + 7J r.1,)}

+ ILI Y '. + )

+(21L + A)i), . -_+ . +

Flow at the inlet and exit of ihe coinputational (omain is assumed to be

inviscid. Inflow and outflow relations from Section 3.2 are thus used to determine

flow quantities at these boundaries..\.s stated in Section 3.2. for supersonic oittflo%%

all quantities niust be extrapolated from .whe interior of the domain. [n pract ce.

this ext rapolation is also )erformed it the .ubsonric Iouildart-lacl elnbedded iln 1.h"
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supersonic outflow. For the cases to I)e considered hereini, no adverse effects of this

extrap~olation are noted.

6.3 Shock- Bouindary Layer- Interaction

Ani inclepth experiment In laminar shock-lboundary-layer interaction was car-

l-ed out by Hakkinen et al. [18] in 19-59 at the Massachusetts Institute of Techntology

under the sponsorship of the 'National Advisory Co mmi-lttee for Aeronautics. De-

tailed measurements were made of pressure distribution. skini friction coefficient.

and velocity profiles for a numbel)r of conmbinations of overall pressure ratio, pf/:.

and shock Reynolds numb~er, Re,,, at a freestreamn Mach numb~er of 2.0 for a shock

wave impinging upon a flat plate boundary- layer. Thle most recogniizable of these

in the CFD community is the case of Figure 61b of reference 1181. The overall pres-

sure ratio for this case is 1.40 at a shock Reynolds number of 2.96 x 10-5, based on

X,=',.978 cm. It was pointed out b~y Degrez. lBoccadoro, and W~endt [I1J that this

has been used as a test case by numerous researchers (Skoglund and Gray in 1969;

MlacCormack in 1971 and 1982; Hanin. W-olfifhtein. and Landau in 1974:; Beam and

WVarming in 1978; and Dawes [101 in 1983). Liou also used this as a test case as

recently as 1989 [26].

The experimental pressure and skini friction p~rofleCs for this caise arc shown Inl

Ficiure 6.8. and a sketch of the wave structure is shown in Figure 6.9. The friction

Coefficient. Cf. is deflined as

where ,, is the normial component of shear stress al. It? wall
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and q,, is the dynamic pressure

qo 0 0(6.17)

With the-tangential velocity given by Eq 3.11, and the wall mapped to a 71= constant

coordinate, -r,,, can be written as

No negative values of skin friction are shown because the total-head tube was not

able to -reliably indicate negative shear values. Locations where the experimental

skin friction may have been negative are shown by downward pointing arrows in

Figure 6.8. While the-accuiacy with which the pressure profile can be calculated has

greatly improved since MacCormack's calculations [28], there has been essentially no

progress in matching the skin friction profile. This includes the overall shape of the

profile as well as the location of the separation and reattachment points. MacCor-

mack's calculations failed to show the characteristic plateau in the presstue piofile,

and, while obtaining a fair prediction of the separation point, he predicted reat-

tachient ahead of- the experimental data.. In addition, the friction coefficient after

reattachment is approximately 20% lower than that suggested by the experimental

data. Liou [26] obtained a fair matching to the pressure profile but failed at pre-

dicting the skin friction profile in the regions of adverse pressuie gradient. In e\.et3

case known to the author, even those that somehow managed to accuratel lredict

separation and reattachment points, the ultimate skin friction le el after reatta i-

ment remains 18% - 20% low. Liou goes ,o far as to state that. this discrepancy in

the skin friction level may be due to transition of the boundary-layer from laminar

to turbulent immediately in the interactio region [26]. This is in direct contrast to

the experimental velocity profiles of reference [18] and contrary to tile observationlb

of the experimenters (18].
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Figure 6.10. C-rid -Used in Shock-Boundary Layer Interaction Investigations

The grid used for the numerical investigations is shown in Figure 6.10, with

133 points in the axial dlirection and 60 points in the normal direction. Spacing is

held constant in the axial direction at \X/Xs,I,,,k = 0.013 and ranges in the normal

dlire2ctionl fr-om an initialzvalue a~t the wvall of1 'Y/XIock = 6.78 x 10' to a filial value

Of !\YIXsIwck = 1.12 x 10-2 at the upper edge. Grid densities are chosrn comparable

to those used by Mac~'ormack [2S], Dawves [101, and Liou [261 to provide a comiparisoni

based on similar grids.

6.3.1 ATAS9C' Soluttions. The computational domnain is initialized at the uni-

form freestream conditions to the left of thle point along thle upper b~oundlary at

which the shock is generated. Post-shock conditions ale applied clownstreani of thlis

point. Al) adiabatic wall condition is used( to obtain the wall temperature along tile

p~late and the nomial momentum equation is solved to obtain thle wvall pres-sure ill

comrbination with the no-slip velocity constraint at the wall.

Figure .11-6.22 show the results of applying the AT.NSC alpoihsoti

test case. Thle data. represented by the figures Canl be taken to be thle solution pro-
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vided-by either ATNSC1 or ATNSC2, since at this Reynolds number both algorithms

provided exactly the same results.

-Figures 6.11 and 6.12 depict the solution obtained with c = 0 in the nonlinear

fields and e = 0.05 in the linearly degenerate fields. Note that this is in contrast

to the values of E = O[0.11 for the nonlinear fields and c = 0 for the linearly de-

generate fields typically utilized for the inviscid calculations of Part I. Values of c

up to 0.025 for the nonlinear fields were found to have no noticeable effect on the

solution while the f value used in the linearly degenerate fields significantly alter

the solution, as will shortly become apparent. The pressure profile of Figure 6.11

clearly shows the pressure rise to sepai ation, the constant pressure plateau within

the separated region, and the pressure ribe to teattachment as described in refer-

ence (18]. The most noticeable aspect of the pressure profile is the slightly lower

value, as compared to the experimental data, within the separation region. The

reason for this is unknown, although the trend was consistent throughout the invesi-

gation. The skin friction profile of Figure 6.11 contains several regions of interest.

-First, there is a. very slight oscillation in the friction coefficient leading up to the

sharp drop just prior to separatioii. This was observed for values of f2.., > 0.025,

and in fact, skin friction was severly oscillatory at Q.,, = O[0.1] which are not un-

usual values when C2. 4 56 0 for inviscid calculations. The length of the separation

region was underpredicted in that delayed -,epaiation and prcmature icattaclhnen t.

were observed. This again appears to be an artifact of the values of c.,, used. as

will become al)parent upon examination of .subsequent figures. The skin friction

profile beyond reattachment shows a, raid i.se to the ultimate va.lue, although thW

ultimate value shows much better agreement with the experinental data. than that

obtained through previous investigation.-, known to the author. Figure 6.12 provides

a visualization of the wave structure through 50 equally spaced pressure contours

between the upstream and downstream pre.,buies. The ATNSC algorithm prov ides

high-resolution capt, ring of all the perltinent. flow structures. These iclude the gen-

83



erated shock, the leading-edge shock and accompanying expasion, separation shock,

expansion fan, and reattachment shock.

The values of c2 .,, were lowered to 0.025 for the solution depicted in Fig-

ures 6.13 and 6.14. The pressure profile of Figure 6.13 is identical to that of Fig-

ure-6.11 except for the extension of the constant pressure plateau slightly upstream

and. downstream. This is clue to the inclease in the length of the separation region

apparent upon comparison of Figures 6.11 and 6.13. Calculated separation and reat-

tachment points agree extremely well vith the experimental data. Note also that

there is-no longer ,ill oscillation in the friction coefficient in the upstream region and

that the rise to the ultimate downstteamin friction value is more gradual. This is the

:first numerical solution known to the authol that correctly predicts the separation

and reattachment points as well as the correct downstream friction coefficient. Coin-

,puted pressure contours for this particular case are presented in Figure 6.14. Wave

structure is very similar to that of Figure 6.12 except for the enhanced structure in

the interaction region, due to the lengthening of the separation region. A le:,gthed

separation region also provides enhanced resolution of the expansion fan in that it

is not so tightly packed bet.ween the shocks.

Values of c necessary to produce an acceptable solution are, as alluded to

_previOLsIy. an order of magnitude smaller than the. values that are often used for

inviscid flow. Since the vast majority of viscous TVD research has been conducted

for hypersonic flows, an answer as sought in the appropriate literature. Exami-

nation of references (24].[32], and [3-t] revealed that values of 0.0.5 < c < 0.25 were
commonly used fbr hypersonic flows in the range 41 _ AL.- K 25 with c as high a.

0.5 in some instance.s. However, it wa. disco\ered that these re.eaichers were using

variable isotropic damping attributed to Yee [13] and anisotropic damping due to

Martinelli [29]. In the normal direction, isotropic damping is applied to the nonlinear

-fields as

= t [itl + I1, I + ( + (6.19)
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and--in the-axial direction, anisotropic clamping is applied to all fields as

= +AtP)j1+~ (6.20)-

where P() = u -VkI + c IVki.

These changes were incorp~oratedl into a version of the ATNSC code and at

solution calculated again using c = 0.0 in the nonlinear fields and e = 0.0.5 in the

linearly degenerate fields. This p~articular solution is depicted in Figures 6.1.5 and

6.16. Figure 6.15 shows that this solution is identical to that of Figure 6.11 except

for a-small 'hlange in the skin friction profile necar the minimum value. Examination

of Figure-6.16 reveals a sharper resolution of the wave structure than Figure 6.12,

more-in line with the structure of Figure 6.14.

Lowering the value of c in the linearly degenerate fields to 0.02.5 resulted in the

solution of Figures 6.17 and 6.13. At this lower value of c. the profiles and contours

of Figures 6.17 and G.AS appear identical to those of the constant clamping case.

Figures 6.1.3 and 6.14.

Based on this set of solutions, it, appears that the change in skini friction pro-

files and wave structure with c. is noL t !:trong ft ..ct!Cn of variable versus cn~

clamping. Research was then conduted into whether anyone had ob)ierved the sanie

-phenomenon in a similar flow regimne. Scider and IMinel [.391 have recentlk observed

similar phenomenon in regards to traii.suni airfoil drag prediction. Thcxs 'Sinulat-ed

the transonic flow about a RAE 2822 airfoil (.1., = 0.7:3.a = 2790) using several

rFVD schemes applied to the thin layer Nax icr-Stokes eqiuationis. inicludling a "clIentie

based on Roe's ap~proximate Riemiann :,olver. Trhey found that the Roe ba.',cd schlicl

provided the best overall results: but that at certain sensitivity to the values of C.for

the linearly degenerate fields existed for all their schemics. They. used 'walue.- of r-=0.

0.1. and 0.2 an([ found thatt c = 0.2 resulted in a, 4% decrease in drag,, while leaving

lift unchanged. This is consistent with the changes in skin friction while pressuirv
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remains -constant a seen herein. They then examined a flat plate at ., = 0.5 and

Rel = 5000 and found: that skin friction in this case increased with increasing t.

-Finally,-they doubled the number of grid points in the boundary-layer, from 7 to 14,

and found that this totally removed the c dependence. It appears that this behavior

-is common to flows in the transonic and low supersonic regimes and the effect of t

must be analyzed whenever a solution is computed at these Mach numbers.

Three final solutions using ATNSC are presented showing the above mentioned
-behavior. First, the variable damping algorithm is used to arrive at the solution of

Figures 6.19 and-6.20 using c =-0.025 for all fields. This solution is identical to that of

Figures-6.13 and 6.14, thus supporting the assertion that the value of c in the linearly
degenerate fields is the -primary influence. Halving t led to tie computed solution

shown in Figures 6.21 and 6.22. Again, the pressure profile remains essentially the

-same as all other cases, but the skin fiiction levels have decreased slightly, resulting

in premature separation and delayed reattachment. Finally. the number of grid

points in -the boundary-layer wa doubled, from 10 to 20. Solutions are presented in

Figure 6.23 for c values of 0.0125. 0.025. and 0.03.5 using this new grid. The pressure

profile remains unchanged except for a. decrease in the length of the pressure plateau.

Skin friction changes only slightly upsteani of the interaction region, but, drops to

zero more rapidly than is the case in Figure 6. 3. Separation and reattachinent pointsb

are correctly predicted, and the ribe to the firial bkin friction level more closely follows

the experimental data than that of the previous solutions. The d dependence hals

been removed, within the range 0.012. < i < 0.035, consistent with t.he observartions

of Seider and Hanel [39].

0.3.2 Beam- T'Pflringlfl ISoittioi. . The al)l)roxinitte-factorization algorithm of

Beam and Warming, Eq 5.39 as implemented by Visbal [171, is applied to this test

case as a comparison against the :\TNSC algorithm. Figures 6.2-t and 6.25 depict the

Beam-Varming solutions using the nominal recommended %alue of the second and

fourth-order damping coefficients [27]. A value of 0.25 is used for the second-older
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coefficients in both the axial and niormnal directions while a value of 0.02 is Used for

the fourth-order coefficient in tile axial direcction and 0.04 for the normal direction.

The pressure profile of Figure 6.2-1 is very similar to the ATNSC profiles excelpt for

a slightly shortened length of the ipiesbure plateaul in the sep~aration region. The

skin friction lprofile is similar to the p~rofiles appearing in the literature for various1

algorithms applied to this lprob~lem. lBearn-W'anming p~redicts early separation xhilc

tile reattachment p)oint is in goodl agreement with the experimental dlata. Ms

noticeab~le is the undler-lpredlictiori of the skin friction level be'~ondl icattkdchmenlt.

approximately 1.5% below the expei iniental value. Figure 6.25 dlepicts a sigllifi(dnt

decrease in resolution of the wave structure as compllared to the ATNSC Solutions.

Shock waves, compressioni waves, anid expanision waves axe all smearedl to a. much

greater extent than those ob)tained with rTp\D.

FigTures 6.26 and 6.27 show thie solution computed when the clamping coeffi-

cients were dlouble thiose of the l)V\ iousb soIlution. The pressu8tre Profile shIowVs a fI' tlIICI
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reduction in the length of the plateau within the separation region. Predicted sepa-

ration and reattachment points are in good agreement with the experimental data,

while the ultimate friction level is still below that of experiment. There is no oscil-

lation of the skin friction profile in this highly damped case. The pressure contours

-of Figure 6.27 are more highly smeared than those of Figure 6.25, but the increased

damping results in a reduction of the oscillatory effects upstream and downstream

of the shocks, compressions, and expansions.

Finally, Figures 6.28 and 6.29 depict a solution using half the damping values

of Figures 6.24 and 6.25. The profiles of Figure 6.28 show that the pressure plateau

in the separation region has lengthened over that of Figure 6.26, more in line with

Figure 6.24, but still is less in extent that that of the ATNSC solutions. Again,

-early separation is evident but reattachment is in line with the experimental data.

Oscillations in the friction profile downstream of reattachment have reappeared, and

the ultimate skin friction remains approximately 1.5% below the experimental value.

Wave structure, Figure 6.29, is much less smeared than in Figure 6.27, but shows

the same oscillatory effects as Figure 6.25.

The solutions obained using the ATNSC TVD algorithm clearly demonstrate

that it is possible to obtain very accurate estimations of separation and reattachment

points while at the same time maintaining high degrees of resolution of the v ,,\e

structure. The Beam-Warming solutions are consistent with those in the liteiat~lme

for numerous algorithms. Only the TVD based ATNSC algorithm incorporates the

necessary physical constraints to achieve high accuracy and resolution.

ATNSC solutions are obtained using a constant CFL number of 0.95, under the

time step restriction of Eq 1.28. The solution is monitored until no change i. os ber ed

in the skin friction profile, typically requiring 4000 time steps to achieve steadx-

state convergence. The data processing rate for ATNSC1 with constant dlamping is

.6071 x 10-5 seconds per grid point per Lime level for the CRAY X-MP/216. Daa

processing rates for the other ATNSC versions arc contained in Appendix C. Beani-
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Warming solutions are obtained using a CFL number of 5.0, again monitorilg until no

change is observed in the skin friction profile. This typically requires 1000 iterations

for Beam-Warming to achieve steady-state convergence. The Bean-Warming dat,.

processing rate is 1.9316 x 10- seconds per grid point per iteration for the CRAY

X-MP/216.

6.4 Unsteady Shock-Induced Heat Tansfer

6.4.1 Heat Transfer Theory of Afirels. The numerical solutions to the Un-

steady, shock-induced heat transfer problem are compared herein against the theot\

of Mirels [30, 31] as implemented by Schlichting [371. The heat flux at the wall can

be written as

q =.,: (TL, - T.,) (6.21)

where the adiabatic wall temperature, Ta,. is given by

Taw = T (I + 1 1142),(6.22)

and the local convective heat transfer coefficient, h, is defined as

=N u .k
hX N k(6.23)

For the laminar flow of a perfect ,a,. s %% eak Sho,'ks. Mire i po% ides I-he fol o0% iII

approximation for the recovery factor. r

r Pr" (6.2-1)

where
0.02

o = 0.39- - (6.25)
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aind U, is the shock propagation speed. The local Nusselt number for an unsteady

flow is defined as

fNTu = O.5CjIRe PrA (6.26)

where Qf is the local skin friction coefficient,

Cf=1 2 (1 _ 0.3416 /2 (6.27)

R-is the Reynolds number

Re = wt(6.2$)

and thle sulbscI~pt wv refers to propei-tier evaluated at the wvail tenlpercture. Time in

Eqs 6.23 and 6.28 is referenced[ to the timei of shock passage. Finally, the exponent

of the Prandtl number in Bc1 6.26 is

A =0.3.5 + 0..5 (6.29)

The ab~ove relations are used to calcu .~ lie theoreticaIl heat fl ux at the piatec wall.

6.4.2 N~umerical Heat 7Thansfer .$olulioii.s. The finial tcs'. case for the ATNSC

algorithm is the prediction of unistead%, amlinar hleat tramfe, due to a bhiock wave

moving clown a flat plate. The origin of 0lis test case is the work of Smith f1J1 who

w~ed a shock tube to study thle heat tianlsfeil to a sharp-edged flat plate, creat ing

ratios of gas temperature to .surface it-inplaturie txplical of those In gas turbinle

engfines. A schemnatic of Sinithi's expei-imittal aIppartus is "howvn InI Figure 6.:30.

The case undler consideration hevre is. i epres(intative of data, set A of Smith [4 1J

The governing parameters are the shotk-I NLAc number)C (3)[rsue ntedVen

section (PI), and temperature in the driven section (TI). The wall cpr:'

onl the flat plate is held constant in thie ralculations at T,. Using Al, 1.095,

P1  4902.00 /7 2 . and T, 297.428 A' resquits in a shock pressure ratio of 1.2:32.

P, = 4102-80 AF9
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Figure 6.30. Flat Plate Mfounted in Shock Tube

a ten-lperature ratio of 1.062, a steady velocity behind the shock of .52.368 m~s. a

steady Mach nunmber b~ehind the shock of 0.147, and( a. steadyv Reynolds n1Uinler Le-

-h1ind the shock of 92482. Shock Mach number, driven section p~ressure, and driven

section temperature are consist~ut with data set A of reference [41]. Experimen-

-tal measurements of the shock Mach number are only accurate vithin ±2%. and

canl significantly effect the level of agreement [1]1 between theory. experiment. n

numerical solution. ThuIS, the numerical suit-lionb and theoretical values used 61,.

nominal shock M-ach number of' 1.095 [or. comparison. A solution foi- .1, = 1.117.

2% a) nmnl is presented as a final compaion

Initial comid, io.is for the computations consist of placing the shock just ahead of

the plate at. time z, mo by establishing pre-sliock and( post-,,hock conditions, on eit-liet

side of:he point. seLt- I.-c. The shock is then allowed to mio%( frcel% ab time p)ro-res:'eb.

With the temperature held at. T, the normai itueatumn equation is solved to obt-ain

the pressure at the wall, in combination wvith the no-slip romstin al, thme t%,dtl. The

nume111rical Solution1 is sampled A a p~oint .3.0S0 x io02 n, (lo~nsticam, of the leading

edge to obtain the heat flux at this point.. This point was chosen consistent with1

the first, sampling lpoint of Smith inl tile Shock tulbe cxperimnAt. The compu1RtationlS

t-Icd out, to a time of ap~proxima~tely one millisecond. Hie approximate 611mV

or transition 10 tuirbulent flow as, noted by Smith [,I I]. Tw%%o differentm garids are tused

I OU



Figure 6.31. Initial Grid for FHeaz Flux Solutions

in this study, the first of which is shown in Figure 6.31. This grid con~sists of 201

points in the axial direction and 31 points in the normal direction. The gridI spacing

is hield constant in the axial direction at _:x = 2.5,10 x 10-3 11 and is stretched in

the normal direction from anl initial value o' Ay, 35.5 x 10-'17 to a Finial value of

'\f= .5.594 x i0O177. G'ridl densities are IM',cd upon assuming a. Blasius flat-plate

b~oundlary- laver thickness at the sampling location [491:

6 ; .5 x(6.:30)

where .r is the distance to the sampling location and Rc., is the 'Reyniolds number

lbased upon thle velocity behind the moving shock %%a%e. Thle initial slpacig in the

normal direction is chosen as Ay,5 /20 . The axial and final normal sp~aCing are

chonen to provide a. reasonable aspect, ratio throughout the domlainl.

Solutions presented can again be takenl as thle results obtained through uti-

lizing either ATN.SC1 or ATN*SC2 since the steady Reynlolds niuinlei is sufficiently

large as to provide for the exact same solution from eithevi algorithm. Fig-ure 6.;32

is the voltution ob~tained when thle c values were held the ,amei as fi the shocl,.

bou'r Jar.- layer interaction test case of the previous section. (I=( -

and 1-2 = (4 = 0.025. The numerical solution is compared to thle theory of Mirelb [:31]

whichi is valid for weak shocks. Time is referenced to thle time of the shock wave

passing the sampling point. Thle peak heat flux is much less than theory or exper-

iment. b~ut it should be realiz that the thcoretical value goes to infinityv at the
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exact moment of shock passage. The numerical solution is initially less than theory,

but soon turns so ,as to become greater that the theoretical flux. The numerical

solution continues to be greater than the theoretical value as the shock continues to

progress downstream. Agreement between the numerical solution and cxperimelnt

-is good beyond approximately 0.3 msec. Figure 6.33 gives the percent difference.,

Eq 3.17, between the theoretical value and the ATNSC solution as a function of

time. The initial large difference is expected as theory predicts an infinite heat flux.

The numerical solution continues to exhibit a larger percent difference a. time goes

on. A dramatic change in the slope of the heat flux profile at approximately 0.0.5

msec suggests there may be an anology to the behavior of the skin frittion profile of

the previous section with rewards to c.

Turning again to the work of Seider and Hiinel (391, they observed the wall

temperature on a. flat plate approached the freestream temperature, rather than

tile recovery temperature, as c was increased. They also found that this effect was

negated when they increased the number of points in the boundary-layer from 7 to

14. While increasing the number of points in the boundary-layer is reasonable foi

steady state calculations, for the unsteady calculations of this test case there is no

boundary-layer immediately at shock passing.

Figures 6.34 and 6.3.5 depict the ATNSC solution when C is set to 0 for all fields.

The peak heat Ilux has increased from the value of 0.94 3TU/.f 2 - of Figure 6.32

to 1.24 I3TU/ft ,. The hcat. flux profile is much smoother than Figure 6.34 and

approaches the theoretical values %ver\ rapidl\. Fiiqure 6.35 show., that. the calculated

heat flux becomes greater than the theoietical value and then drops to a valum 7";

lower that theoretical, followed by a rise to a final level jPst 1%. lower that the

theoretical level. The early rise above theoretical levels followed by a drop below

the theoretical level may perhaps be explained by examining Figure 6.34. The

thcoretical curve must approach infinit s time goes to zero. Following baclward.s

along "the curve, the rise in heat iransfer nust begin before the associated rise in
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the--numerical solution. or any physical solution. since neither ap proach infinitY at

time zero. Both thle numerical and theoretical heat flux profiles are shifted below

the exp~erimental profile. Increasing the shock Mach numnbei to thle upper end of Elhe

exlperimnental tolerance is suggested. and will lbe examined shortly.

Visbal's im[plemenltation of the lBeani-W-armning algorithm, Eq 3.39, is also used

to obtain a solution to this test cabe. Trapezoidal time differencing ib used to jpio', ide

second-order accu racy in time.

Figures 6.36 and 6.37 represent the solution obtained using thle nomlinal rc-

onimenclec vauf the second and fourthi-ordcr damping coefficients as giveni in

Section 6.:3. lBeanOWarmim, fpiedlicts a peak hecat flux between that of Figures 6.:3-l

and 6.32. Rather severe oscillations occur in thle heat flux just after thle sh~ock paSs

the sampling point but eventually damip out to a final heat flux value 26% higher than

the theorectical value. lBeani-Watmin- heat flux values agree well with experiment

after approximately 0.2 mnsec. "is is .surp~rising in light of Elhe severe oscillations

occuring prior to this time.

The values of the clamping, coefficients -ire now doubled, consis'tent, vith Llhe

shock- boundar - laver intera tioin cd-Se. and the solution of Figuires U.~S and( G.39

obtained. lThe peak hleat flux hlas been reduced significantly and Lite Oscillations-

damped somiewhat. bt time final heat, flux vlehas increased to 33%, above Olme

theoretical %-lune. Beamn- WVarming prediktionms are now higher thanl thie eXp~eiiliiltll

values after approximately 0.3 nis-r. Thus. a-, dhe oscillationis are damped unt. O w

overall Ilea, flux predliction suffers.

The diamping coefficients are. finll1 reduiCed to hialf of thleir IlOWliilh Wdllu

resulting in tdie solutions of Fig~ures 6i.40 mnd 6. 11 . T[le peak hecat filu.\ is afpproadliilg.

a value consistent wit Elie results of Figure G.3-1 but Elhe oscillations have become

particularly se :ere. In fact. reducingV the damping [illcht below this poiiit (aim.,s Lilt

algor i to becomle unstable. The lower dlampm~ing of Ihis Moltion p)rovide:, the bett

lBeani \armnigo p~redictioin of thie finial hiedtlux 111%able. 6ut, ti-is s xt l, abow' tile
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theoretical value. Oscillations in the Beam-Warming solutions of Figures 6.36, 6.38,

and 6.40 suggest a common frequency, independent of the damping applied. Further

examination of the Beam-Warming solutions confirm this. Beam-Warming bieaks

the initial shock wave into a series of compressions and expansion shocks propagating

downstream. As these nonphysical waves pass the sampling point, oscillations in the

heat flux are observed. Varying the amount of damping applied affects the magnitude

of -the jumps across -these waves, but not the frequency at which they are generated.

A new grid is now utilized in an attempt to see the effect on heat flux of

decreasing A1x in the vicinity of the sampling point. This new grid is shown in

Figure-6.42. The grid spacing varies in the axial direction from an initial value of

Ax = 5.066 x 10- at the upstream boundary to Ax = 1.252 x 10- ' at the sampling

point to Ax = 2.026 x 10-2 at the downstream boundary. The grid is stretched away

from-the wall with the same initial spacing as the grid of Figure 6.31 but with a final

spacing of Ay = 1.252 x 10- 2 at the upper boundary.

Figures 6.43 and 6.44 depict the result of utilizing ATNSC to arrive at a solutioni

with c = 0 in all fields. Figure 6.13 shows that the predicted peak heat flux has

increased 24% over that of Figure 6.34. The heat flux profile seems to have been

stretched immediately at shock pa.age, iemaining unchanged after appi oxinmatel%

0.1 msec, and is still shifted below the experimental profile. This is verified by

comparison of Figure 6.44 and Figure 6.3-5.

The Beam-Warming algorithm is applied to this new grid using the nominal

damping coefficients mentioned earlier. llesults are shown in Figures 6.-45 and 6.-16.

While ti0- peak predicted heat flux has increased over that of Figure 6.36, it is ju.t

beginning to approached the level of the AT'SC prediction on the previous grid. t

times greater than 0.3 msec, the solution is tending away form the good agreemnent

with experimental data exhibited in Figuie 6.36. Figure 6.16 shows a S% increase iII

the difference from theory, as compared to Figure 6.37, for the final heat, flux \aliie.
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Figure 6.42. Second Grid for Heoat Flux Solutions

Finally, Solutions were Computed with the ATNSC and IBeaml-W-armiing algo-

rithms with M, = 1.117 for comparison againist each other and the experimental

data. ATNSC calculations again used c = 0, while nomifial values of the clampIng

coefficients .,rere used for the IBeani-Waiming solution. Figure 6.47 presents the time

history -for this case. Agreement between theory, experimnent, and the ATNSC solui-

tion-is excellent in this case, and suggests that the experimental shock Mach numbel

wvas prolbably closer to 2% above the nominal value. lBeam-Warming again undellpre-

clicts the peak heat flux.-lisplays oscillations -is comnpressions and expansion shock.,

pa~ss the sampling location, and utiiately overl)redlicts the heat. flux level.

It is clear that a T\'D based algorithm suich as ATNSC is niecessary, to olbtainl

accelptab~le solutions for the l)roblem1 Of unlsteady shock-in1duced heat transfier. The

solutions are free of any oscillations and come extremely close to thle Ilicoretital

values of Mirels [301. In contrast. the Beami-Warminig algoi ithin yields solutioais, with

osci'llatory behavior, (lute to the generation of nonphysical ~ 'c.even at. diciv

high values of the clamping coefficients. In nio iiistaiice did the Bca-m-Warmiii"

algorithm yield an acceptable cormparison with theoretical values, predicting heat

flux values IS - .34% higher than theory.

All ATNSC solutions are undertaken at a. CF'L of' 0.9.5. with the time Ntep

restriction of Ecj 1.28. This results ill appro.\,imately 7000 swee1)s to aiiv at a I ii)
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of 1.0 msec for the first grid.. and appIroximately 14000 sweeps for the second -rid.

The Beami-W armiing solutions utilize a constant time step which was chosen from

the smallest time step taken by the ATN,\,sC algorithm.

6.~5 Coinclusiois

TVD methoclolgy has been applied to p~roblems not p~reviously examined using,

TVD schemes. Prior research concentraeci mainly on sup~ersonic and hyxpersonic

flows. both inviscid and viscous. and wa.- almost solely directed towaid ob~taininlg

steadly-state solutions. The current effort. has extended the TVD niethodolog to

inviscicl transonic cascade flows, x iscous flows %% it 11shock-induced lainiar, lboundaI '.

layer separation, and unsteady laminai flows wvith signifcant shock- ind uced heat

transfer. Additionally, an algorithm was developed herein that shows promise for

apIplication to low Reynolds number situations.

Transonic cascade flows are currently of great. interest to gas turlbife engine
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designers and- researchers (2, 14. 13]. Analysis of these flows is a severe test of an

algorithm because of- the wide Maclh number range, typically 0.3 < AI < 1.3 . and

the f'act that the Hlow-is confined-in a passage where wave systemns teli)d to reflect back

into-the domain. Results presented in Section 3.4 show that not only do thle TNT

schemes-of Sections 2.2.2 and 2.2.3 yield steady-state results in excellem~ agreement

with experiment, lbut that the transient behavior is also modeled correctly. Correct

modeling of this transient behavior is an important achievement, since previous

efforts have been unsuccessful in this regard (.38, 151.

Lam-inar shockdbouiidarV-layer interaction hias been studied by numerous re-

searchers-using highly -egarclec algforithms suchi as the MlacCorinack [281, Dawes [101,

Beani-\arming [1-11, and Newton [2G] methods. While acceptable predlicuions of

the p~ressure -profile in the boundary- layer hiave been con. .,lutecl, researchers have

remaied unable to accurately compute the skin friction profile. The ATNSC algo-

-ritlims finally p~rovide the means to accurately comlpute pressure profiles, separation

and reattachment locations, and skin friction piofiles in excel len t agreement with the

~ivailable exp)erimental data. Results given in Section 6.:3 are testament to this. In

adldition to the success in solving this complex problem, the current effort extends.

the knowledge of' how TVD entropy correction affects thie boundary-layer velocity

-p rofilec.

Unsteady shiock-induced hecat transf'er has.- been studied theoretically [:30. :31],

experi mentally [1-1. -111. and has rcceii uI bec one of interest comipuLat-iona Ily. Trhe

increased interest is dlue to the enhanced byst cm performance axtilable throughz dc-

curate knowlege of tHie heat tranisfer [6j. I howe%'er, it. is not. uncommnon for con!

puited- heat. flux Values to be ani order or. miatnitude different fromi experimehltdl %idl-

uces [17]. The ATNSC algorithmns representI a Significant adVanIcmcn InI thle state-

of-the- art for, comnpu ting shock - induceh hmctt transfer. Solutions comphu tecd with the

ATNSC schemes. presented in Section 6.4.2. are far superior to the iionphysical

Beamn-Warming solutions and agree wvehi with both theory and ex periment.. Addi



-tionally,-tie-ATNSC1 data- processi ng rate is 16% faster than that for lBeamn-Warining

using thle same time step.

Results of applying the ATNSC2 scheme to the viscous lBurgers* eqluation sug-

0aest that the scheme may lbe beCneflcial to investigators studlying low Reynlolds5 nilh-

ber flows. The scheme is extremely stable and exhibits superb accuracy for this model

problern. C'onventional wisdlom states that TVD schemes are not recommended for

problems containing no discontinui ties, since they degrade to first- order accuracy

near points of extrema. [1.51. Behavior of the ATNSC2 scheme suggests that TVD

-akorithms warrant a closer examination for app~lication to shock-free flows.

The research described herein represents a significant contribution to the field

of comp~utational fluid dynamics. Suggestions for extending the re:,earch efforts are

-present~ed in the followi ng section.

-6.6 Further- Research

Further research needs to be concluctec! in several areas. The main quet4ion,

in -termis ofL the inviscid investigations relates to the effect of grid cell skewness onl

entropy production. Isolating this i nvesti gatLion to the inviscid caw~ will enable am,

insights to be directly imlplemiented into -. ,scous algorithm,. were it would he di)fficutlt

to dlist ingutish lbetween spurious en trop, prod dction and normal viscouts dissi patLc.

Two areas should be addressed for thle viscous algorithmns. First is Lh'- effect

of' thle second-order accurate algTorithmi at low Recynolds number,,. Tlhe Rle-vnolds

numbers of interest herein, except for' Burgers' equiation, were on the orclci of 10O'

aind no distinmmislhable difference between the ATNSCII and( ATNSC2 algorithiis ~a

ob~served. However, thle low Rleynolds number test pro~ided by lBurgcs* equation

dramiatically showed the enhianced performance of the second -order algori thm onver ItLb

first-order counterp~art. Although no low Reynolds number flows containling !,hutk,.

conies to mind. excep~t for the high altitude transistion regime were the continuum

Ps51llfl[tiofl fails to hold, furthler investigation into the applicability of the second-l



order algorithm is certainly warranted. Further analysis of the truncation error

cancelling terms in ATNSC2 should be performed. If some of the terms are negligible

-for certain flow situations. a dramatic increase in computational efficiency ma3 be

possible.

Second, performance of the ATNSC algorithms with a turbulence model in-

cluded should be investigated. At higher overall pressure ratios than the one con-

-sidered in Section 6.3. the boundary-layer tends to transition to turbulent upon

-reattachment, resulting in higher skin friction levels. As previously mentioned. ilon-

TVD algorithms under- predict the laminar skin friction level beyond reattachment.

Preliminary investigations show that implementation of a Baldwin- Lomax tU ')u-

lence model [3] tends to overpredict the skin friction in the turbulent region. This

initially -leads the author to believe that turbulence models. developed in the con-

text-of non-TVD aigorithms, may compensate for a non-TVD scheme's tendency to

under-predict skin friction.

Overall, the TVD based viscous algorithms perform exceptionally %veil on the

test cases herein. Emphasis must be placed on applying these algorithms to even

more rigorous test cases so as to gain an even greater understanding of .heil weak-

-nesses as well as their strengths.
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Appendix A. Viscous Jacobians
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Appendix B. ATEC Routines and FLOWTRACE Results

B.1 Descriptioi of ATEC Routines

For' clarity, the routines are described in the order they would generally be

called, independent of the sweep direction.

ATEC - main program

GEOM'vETRY - computes cell centers based onl corner values

TFO{N' - computes the metric transformation terms

INITIAL - enforces the initial conditions

STORE - stores the dependent variables at the current timne level

FLUXF - computes the direction flux

FLiJXG - computes the 7? direction flux

ROEAVGZ - computes Roe averaged quantities along constant qj ines

ROEA\'CE - computes Roe averaged quantities along constant lines

EVALUEZ - computes the e igenvalUes

EVP\LUEE - computes theq ijigenvalues

TM STE - computes the allowab~le timne step

ALPI-AZ - computes the difference of characteristic variables in the directioni

ALPI-AE - computes the difference of characteristic variables in the i;direction

GCALCZ - computes the flux limiters for the direction flux

GCALC'E - computes the flux limiters for theqi directioni flux

l3ISTAT\rViZ - Comp~utes artificial dlissip~ation for sweep

B ETATV DE - comnputes artificial dissip~ationl for yj sweep

EVECTORZ -computes the eigenvectors for the eigenvalues

E V ECTO0R E - computes the cigenvectors for the 71 eigenvalues

ARTC'OMPZ - computes the final artificial clisipationi for thle direction sweep

A RTC'OMP E - comp~utes the flimal artificial (lissiIpatiol] for the q; directioni sweep
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ESOLVE - solves for the cirpenclent variables dlUring the sweep

GSOLVE - solves for the dependent variables during the qj swveep

BNDBLD - enforces the blade or' wall surface bounclary conditions

BNDEX - enforces the exit plane boundary conclitions

BNDPER - enforces the periodic boundary conditions

BNDIN - enforces the inlet p~laneC boundlary conditions

NORM - complutes the L2 and Lnorms

OUTPUT - outp~uts the solution vector
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B.2 AITEO--FV (Finite- Voluime Formuzilationt)

The data processing rate for the finite-volume formulation is 1.2274 x 10-5

seconds per grid point per time level for the CRAY X-MP/216, utiiling a 177 x 20

grid. FLOWTRACE results are for 1000 iterations (2000 time levels).

FLOWTRACE RESULTS OF ROUTINES

SORTED BY TIME USED (DESCENDING)

(CPU Times are Shown in Seconds)

Routine Name Tot Time # Calls Avg Time Percentage Accum%

BETATVDE 1.40E+01 352000 3.98E-05 16.10 16.10

BETATVDZ 1.15E+01 57000 2.02E-04 13.23 29.33

GSOLVE 6.99E+00 352000 1.99E-05 8.04 37.37

ATEC 6.55E+00 1 6.85E+00 7.54 44.91

ROEAVGE 5.55E+00 3000 1.85E-03 6.39 51.30

ROEAVGZ 5.30E+00 3000 1.77E-03 6.10 57.40

FSOLVE 4.86E+00 57000 8.52E-05 5.59 62.99

EVECTORE 3.52E+00 352000 1.OOE-05 4.05 67.04

ALPHAZ 3.28E+00 3000 1.10E-03 3.78 70.82

GCALCZ 3.16E+00 3000 1.05E-03 3.63 74.45

ARTCOMPE 3.01E+00 352000 8.55E-06 3.46 77.91

EVECTORZ 2.38E+00 57000 4.18E-05 2.74 80.65

FLUXG 2.37E+00 5000 4.74E-04 2.72 83.37

ARTCOMPZ 2.32E+00 57000 4.06E-05 2.66 86.04

ALPHAE 2.29E+00 2000 1.14E-03 2.63 88.67

FLUXE 2.27E+00 5000 4.54E-04 2.61 91.28

GCALCE 2.15E+00 2000 1.07E-03 2.47 93.75

NORM 1.06E+00 400 2.65E-03 1.22 94.97
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TMSTEP .103E+00 1000 1.03E-03 1.19 96.15

OUTPUT 7.8-11 7.18E-01 0.83 96.98

EVALUEE 6.50E-01 3000 2.17E-04 0.75 97.73

EVALUEZ 6.18E-01 3000 2.06E-04 0.71 98.44

BNDBLD 4.66E-01 5000 9.32E-05 0.54 98.97

BNDEX 3.91E-01 5000 7.82E-05 0.45 99.42

BNDPER 3.35E-01 5000 6.70E-05 0.39 99.81

BNDIN 1.46E-01 5000 2.92E-05 0.17 99.98

STORE 1.61E-02 100 1.61E-04 0.02 100.00

TFORM 3.25E-03 1 3.25E-03 0.00 100.00

GEOMETRY 2.7HE-04 1 2.75E-04 0.00 100.00

INITIAL 1.83E-04 1 1.83E-04 0.00 100.00

Totals 8.69E+01 1689505

FLOWTRACE RESULTS OF ROUTINES

SORTED BY 'IN-LINE' FACTOR (DESCENDING)

(CPU Times are Shown in Seconds)

(Factors Greater Than 1 Could Indicate Candidates for In-Lining)

Routine Name Tot Time # Calls Avg Time Percentage "In-Line" Factor

ARTCOMPE 3.01E+00 352000 8.55E-06 3.46 349.66

EVECTORE 3.52E+00 352000 1.OOE-05 4.05 298.90

GSOLVE 6.99E+00 352000 1.99E-05 8.04 150.58

BETATVDE 1.40E+01 352000 3.98E-05 16.10 75.20

ARTCOMPZ 2.32E+00 57000 4.06E-05 2.66 11.92

EVECTORZ 2.38E+00 57000 4.18E-05 2.74 11.59
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FSOLVE 4.86E+00 57000 8.52E-05 5.59 5.68

-BETATvbz 1.15E+01 57000 2.02E-04 13.23 2.40

BNDIN 1.46E-01 5000 2.92E-05 0.17 1.45

BNDPER 3.35E-01 5000 6.70E-05 0.39 0.63

BNDEX 3.91E-01 5000 7.82E-05 0.45 0.54

BNDBLD 4.66E-01 5000 9.32E-05 0.54 0.46

EVALUEZ 6.18E-01 3000 2.06E-04 0.71 0.12

EVALUEE 6.50E-01 3000 2.17E-04 0.75 0.12

FLUXF 2.27E+00 5000 4.54E-04 2.61 0.09

FLUXG 2,37E+00 5000 4,74E-04 2.72 0.09

GCALCZ 3.16E+00 3000 1.05E-03 3.63 0.02

ALPHAZ 3.28E+00 3000 1.10E-03 3.78 0.02

GOALCE 2.15E+00 2000 1.07E-03 2.47 0.02

ALPHAE 2.29E+00 2000 1.14E-03 2.63 0.01

ROEAVGZ 5.30E+00 3000 1.77E-03 6.10 0.01

ROEAVGE 5.55E+00 3000 1.85E-03 6.39 0.01

ATEC 6.55E+00 1 6.55E+00 7.54 0.00

N11ORM 1.06E+00 400 2.65E-03 1.22 0.00

=TMSTEP 1.03E+00 1000 1.03E-03 1.19 0.01

OUTPUT 7.18E-01 1 7.18E-01 0.83 0.00

STORE 1.61E-02 100 1.61E-04 0.02 0.01

TFORM 3-25E-03 1 3.25E-03 0.00 0.00

GEOMETRY 2.75E-04 1 2.75E-04 0.00 0.00

INITIAL 1.83E-04 1 1.83E-04 0.00 0.00

Totals 8.69E+01 1689505
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B. 3 A TEG-FD (Ghain-Rude Fo rmilation&

The data processing rate for the chain-rule formulation is 1.2-11.5x 10-5 seconds

per grid point per time level for the CRAY X-MP/216. utiiling a 177 x 20 grid.

FLOXVTRACE results are for 1000 iterations (2000 time levels).

FLOWTRACE RESULTS OF ROUTINES

SORTED BY TIME USED (DESCENDING)

(CPU Times are Shown in Seconds)

Routine Name Tot Time # Calls Avg Time Percentage Accum%

BETATVDE 1.37E+01 352000 3.88E-05 15.56 15.56

BETATVDZ 1.13E+01 57000 1.97E-04 12.81 28.37

GSOLVE 8.01E+00 352000 2.28E-05 9.12 37.49

ATEC 6.58E+00 1 6.58E+00 7.49 44.99

FSOLVE 5.59E+00 57000 9.80E-05 6.36 51.34

ROEAVGE 5.54E+00 3000 1.85E-03 6.30 57.64

ROEAVGZ 5.29E+00 3000 1.76E-03 6.02 63.67

EVECTORE 3.54E+00 352000 1.O1E-05 4.03 67.70

ALPHAZ 3.25E+00 3000 1.08E-03 3.69 71.39

GCALCZ 3.15E+00 3000 1.05E-03 3.58 74.97

ARTCOMPE 2.99E+00 352000 8.49E-06 3.40 78.37

FLUXG 2.36E+00 5000 4.72E-04 2.69 81.06

EVECTORZ 2.34E+00 57000 4-11E-05 2.67 83.73

ARTCOMPZ 2.26E+00 57000 3.97E-05 2.57 86.30

FLUXF 2.26E+00 5000 4.52E-04 2.57 88.88

ALPHAE 2.26E+00 2000 1.13E-03 2.57 91.45

GCALCE 2.14E+00 2000 1.07E-03 2.44 93.89

NORM 1.03E+00 400 2.57E-03 1.17 95.06
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TMSTEP 1.03E+00 1000 1.03E-03 1.17 96.23

OUTPUT 7.13E-01 1 7.13E-0 0.81 97.0

EVALUEE 6.33E-01 3000 2.11E-04 0.72 97.76

EVALUEZ 6.158-01 3000 2.05E-04 0.70 98.46

BNDBLD 4.63E-01 5000 9.26E-05 0.53 98.99

BNDEX 3.91E-01 5000 7.82E-05 0.44 99.43

BNDPER 3.34E-01 5000 6.68E-05 0.38 99.81

BNDIN' 1.46E-01 5000 2.92E-05 0.17 99.98

STORE 1.56E-02 100 1.56E-04 0.02 100.00

TFORM 1.87E-03 1 1.87E-03 0.00 100.00

GEOMETRY 2.-79E-04 1 2.79E-04 0.00 100.00

INITIAL 2.05E-04 I, 2.05E-04 0.00 100.00

Totals 8.79E+01 1689505

FLOWTRACE RESULTS OF ROUTINES

SORTED BY 'IN-LINE' FACTOR (DESCENDING)

(CPU Times are Shown in Seconds)

(Factors Greater Than 1 Could Indicate Candidates for In-Lining)

Routine Name Tot Time #Calls Avg Time Percentage "In-Line" Factor

ARTCOMPE 2.99E+00 352000 8.49E-06 3.40 352.44

EVECTORE 3.54E+00 352000 1.01E-05 4.03 297.04

GSOLVE 8.01E+00 352000 2.28E-05 9.12 131.35

BETATVDE 1.37E+01 352000 3.88E-05 15.56 76.98

ARTCOMPZ 2.26E+00 57000 3.97E-05 2.57 12.20

EVECTORZ 2.34E+00 57000 4.11E-05 2.67 11.77
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FSOLVE 5.59E+00 57000 9.80E-05 6.36 4.94

BETATVDZ 1.13E+01 57000 1.97E-04 12.81 2.45

BNDIN 1.46E-01 5000 2.92E-05 0.17 1.46

BNDPER 3.34E-01 5000 6-68E-05 0.38 0.64

BNDEX 3-91E-01 5000 7.82E-05 0.44 0.54

BNDBLD 4.63E-01 5000 9.26E-05 0.53 0.46

EVALUEZ 6.15E-01 3000 2.05E-04 0.70 0.12

EVALUEE 6.33E-01 3000 2.11E-04 0.72 0.12

FLUXF 2.26E+00 5000 4.52E-04 2.57 0.09

FLUXG 2.36E400 5000 4.72E-04 2.69 0.09

GCALCZ 3.15E+00 3000 1-05E-03 3.58 0.02

ALPHAZ 3.25E+00 3000 1-08E-03 3.69 0.02

GCALCE 2.14E+00 2000 1.07E-03 2.44 0.02

ALPHAE 2.26E+00 2000 1.13E-03 2.57 0.02

ROEAVGZ 5.29E+00 3000 1.76E-03 6.02 0.01

ROEAVGE 5.54E+00 3000 1.85E-03 6.30 0.01

ATECFD 6.58E+00 1 6.58E+00 7.49 0.00

NORM 1.03E+00 400 2.57E-03 1.17 0.00

TMSTEP 1.03E+00 1000 1-03E-03 1.17 0.01

OUTPUT 7.13E-01 1 7.13E-01 0.81 0.00

STORE 1.56E-02 100 1.56E-04 0.02 0.01

TFORM 1.87E-03 1 1.87E-03 0.00 0.00

GEOMETRY 2.79E-04 1 2.79E-04 0.00 0.00

INITIAL 2-05E-04 1 2-05E-04 0.00 0.00

Totals 8.79E+01 1689505
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Appendix C. ATISC Routines an~d FLO0WTRA CE Results

C-1 Descriplion of ATNSCI and ATM5C'2 Routines

For clarity, the routines are dlescribedI in the order they would generally be

called, independent otf thle sweep direction.

ATNSC1 (ATNSC2) -main p~rogramn

GEOMIETRY -cornpjutes cell centers based onl corner values

TFORVI -computes the metric transformation terms

i1NITIAL enfovrces dhe initial coiiditiois

STORE -stores thle dlepenldent variables at the current time level

_EUIJFLUX -computes thle inviscicl flux terms

VISFLUX -computes the viscous flux terms

ROEAVGZ - computes floe averaged quantities along constant, -q lines

ROE AVGE - Computes Rtoe averaged quantities along constant lines

E VA L UEZ - Computes the cigenvalues

IWA LU?.E - computes tile q~ eigetivalues

T.NMSTEP - computes dhe allowable time step)

ALPFIAZ -Comnpjutes thle difference of characteristic variables iii the ( direLtionl

ALPF:\E -comflluteC thle difference of characteristic variables in the qdirectouu1

GCALCZ -Computes thle flux limiters for the direction flux

C;CA LCE -Computes thle flux limiters for the 71 direction flux

.JAMOIIAN - CollputeL('S I lie viscous .Jicolbians (ATNC\SC'2 only)

PSIZETA - computes thew finial viscous flux in the direction

PSIETA - computes thle final viscous flux in the ijdirection

I3I3TATPVDZ - Computes artificial (dissipation for sweep

I3EDVTVDD - computes artificial (dissipation for q~ sweep

EVCTr ORz - Computes tie eigenCjvectors foi- thile cigenv'alues
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EVECTORE - computes the eigenvectors for the yj eigenvalues

ARTCOMPZ - computes the final artificial dissipation for the direction sweep

ARTCO.MPE - computes the final artificial dissipation for the il direction sweep

FSOLVE - solves for the drpendent variables during the sweep

G'SOLVE - solves for the dependent variables during the i} sweep

BNDBLD - enforces the blade or wall surface boundary conditions

BNDEX - enforces the exit plane boundary conditions

-BNDPER - enforces the periodic boundary conditions

3NDIN - enforces the inlet plane boundary conditions

NORM - computes the L2 and L,. norms

OUTPUT - outputs the solution vector
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C.2 ATNSCI (Constant Damping)

The data processing rate for the constant c case is 1.6071 x 10' Seconds

per grid point per time level for the CRAY X-MP/216, utiiling a 133 x 60 grid.

FLOWTRACE results are for 200 iterations (4100 time levels).

FLOWTRACE RESULTS OF ROUTINES

SORTED BY TIME USED (DESCENDING)

(CPU Times are Shown in Seconds)

Routine Name Tot Time # Calls Avg Time Percentage Accum%

VISFLUX 7.66E+00 1000 7.66E-03 14.92 14.92

FSOLVE 6.13E+00 34800 1.76E-04 11.94 26.86

BETATVDZ 4.69E+00 34800 1.35E-04 9.13 35.99

GSOLVE 4.40E+00 52400 8.40E-05 8.57 44.56

BETATVDE 4.25E+00 52400 8.11E-05 8.28 52.84

ROEAVGE 2.67E+00 600 4.45E-03 5.20 58.04

ROEAVGZ 2.66E+00 600 4.44E-03 5.19 63.23

ATNSC1 1.92E+00 1 1.92E+00 3.74 66.97

ALPHAZ 1.61E+00 600 2.68E-03 3.13 70.09

EULFLUX 1.59E+00 1000 1.59E-03 3.11 73.20

GCALCZ 1.53E+00 600 2.55E-03 2.98 76.18

OUTPUT 1.49E+00 1 1.49E+00 2.90 79.08

PSIZETA 1.20E+00 600 2.OOE-03 2.34 81.42

EVECTORZ 1.19E+00 34800 3.41E-05 2.31 83.73

ARTCOMPZ 1.18E+00 34800 3.38E-05 2.29 86.02

ALPHAE 1.08E+00 400 2.71E-03 2.11 88.13

TMSTEP 1.08E+00 200 5.38E-03 2.09 90.22

GCALCE 1.02E+00 400 2.55E-03 1.99 92.21
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EVECTORE 9.69E-01 52400 1.85E-05 1.89 94.10

ARTOOMPE 8.09E-01 52400 1.54E-05 1.58 95.67

PSIETA 8.05E-01 400 2.01E-03 1.57 97.24

NORM- 5.01E-01 80 6.26E-03 0.98 98.22

EVALUEZ 3.24E-01 600 5.39E-04 0.63 98.85

ELUE3.23E-01 600 5.39E-04 0.63 99.48

BNDBLD 1.97E-01 1000 1.97E-04 0.38 99.86

BNDEX 4.17E-02 1000 4.17E-05 0.08 99.94

BNDIN 1.32E-02 1000 1.32E-05 00 99

STORE 7.56E-03 20 3.78E-04 0.01 99.98

INITIAL 5.34E-03 1 5.34E-03 0.01 99.99

TFORM 4.42E-03 I.4.42E-03 0.01 100.00

Totals 5;13E+01 359504

FLOWTRACE RESULTS OF ROUTINES

SORTED BY 'IN-LINE' FACTOR (DESCENDING)

(CPU Times are Shown in Seconds)

-(Factors Greater Than 1 Could Indicate Candidates for In-Lining)

Routine Name Tot Time # Calls Avg Time Percentage "In-Line" Factor

ARTCOMPE 8.09E-01 52400 1.54E-05 1.58 28.84

EVECTORE 9.69E-01 52400 1.85E-05 1.89 24.08

ARTCOMPZ 1.18E+00 34800 3.38E-05 2.29 8.74

EVECTORZ 1.19E+00 34800 3.41E-05 2.31 8.68

BETATVDE 4.25E+00 52400 8-IIE-05 8.28 5.49

GSOLVE 4.40E+00 52400 8.40E-05 8.57 5.30
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BETATVDZ- 4.69E+00 34800 1.35E-04 9.13 2.19

-FSOLVE 6.13E+00 34800 1.76E-04 11.94 1.68

BNDIN 1.32E-02 1000 1.32E-05 0.03 0.64

BNDEX 4.17E-02 1000 4.17E-05 0.08 0.20

BNDBLD 1.97E-01 1000 1.97E-04 0.38 0.04

VISFLUX 7.66E+00 1000 7.66E-03 14.92 0.00

ROEAVGE 2.67E+00 600 4.45E-03 5.20 0.00

ROEAVGZ 2.66E+00 600 4.44E-03 5.19 0.00

ATNSC1 1.92E+00 1 1.92E+00 3.74 0.00

ALPHAZ 1.61E+00 600 2.68E-03 3.13 0.00

EULFLUX 1.59E+00 1000 1.59E-03 3.11 0.01

GCALCZ 1.53E+00 600 2.55E-03 2.98 0.00

OUTPUT 1.49E+00 1 1.49E+00 2.90 0.00

PSIZETA 1.20E+00 600 2.OOE-03 2.34 0.00

ALPH AE 1.08E+00 400 2.71E-03 2.11 0.00

TMSTEP 1.08E+00 200 5.38EP-03 2.09 0.00

GCALCE 1.02E+00 400 2.55E-03 1.99 0.00

PSIETA 8.05E-0i 400 2.01E-03 1.57 0.00

NORM 5.01E-01 80 6.26E-03 0.98 0.00

EVALUEZ 3.24E-01 600 5.39E-04 0.63 0.01

EVALUEE 3-23E-01 600 5.39E-04 0.63 0.01

STORE 7.56E-03 20 3.78E-04 0.01 0.00

INITIAL 5.34E-03 1 5.34E-03 0.01 0.00

TFORM 4.42E-03 1 4.42E-03 0.01 0.00

Totals 5.13E+01 359504
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C.3. A TNSCI (A nisotropic and Isotropic Damping)

The data, processing rate for the variable c case is 2.0457 x 10O' seconds per grid

point per timne level for the CRAY X-MP/216, utiiling a 133 x60 grid. FLOWTR/A t,

results are for 200 iterations (400 time levels).

FLOWTRACE RESULTS OF ROUTINES

SORTED BY TIME USED (DESCENDING)

(CPU Times are Shown in Seconds)

Routine Name Tot Time # Calls Avg Time Percentage Accum%

BETATVDZ 1.58E+01 34800 4.54E-04 24.22 24.22

VISFLUX 7.63E+00 1000 7.63E-03 11.70 35.91

BETATVDE 6.77E+00 52400 1.29E-04 10.37 46.28

FSOLVE 6.13E+00 34800 1.76E-04 9.39 55.67

GSOL.VE 4.58E+00 52400 8.74E-05 7.02 62.69

ROEAVGE 2.66E+00 600 4.43E-03 4.07 66.77

ROEAVGZ 2.65E+00 600 4.42E-03 4.06 70.83

ATNSC1 1.98E+00 1 1.98E+00 3.03 73.86

ALPHAZ 1.60E+00 600 2.66E-03 2.45 76.30

EULELUX 1.58E+00 1000 1.58E-03 2.43 73.73

OUTPUT 1.58E+00 1 1.58E+00 2.42 81.15

GCALCZ 1.53E+00 600 2.55E-03 2.34 83.49

PSIZETA 1.22E+00 600 2.04E-03 1.88 85.37

EVECTORZ 1.18E+00 34800 3.40E-05 1.81 87.18

ARTCOMPZ 1.16E+00 34800 3.34E-05 1.78 88.96

TMSTEP 1.08E+00 200 5.40E-03 1.65 90.61

ALPHAE 1.07E+00 400 2.68E-03 1.65 92.26

GCALCE 1.02E+00 400 2.55E-03 1.56 93.82

C- 1:31



EVECTORE 9.87E-01 52400 1.88E-05 1.51 95.34

PSIETA 8.16E-01 400 2.04E-03 1.25 96.59

ARTCOMPE 8.01E-01 52400 1.53E-05 1.23 97.81

NORM 5.16E-01 84 6.15E-03 0.79 98.60

EVALUEZ 3.21E-01 600 5.35E-04 0.49 99.10

EVALUEE 3.20E-01 600 5.33E-04 0.49 99.59

BNDBLD 1.96E-01 1000 1.96E-04 0.30 99.89

BNDEX 4.26E-02 1000 4.26E-05 0.07 99.95

BNDIN 1.42E-02 1000 1.42E-05 0.02 99.97

STORE 7.79E-03 20 3.90E-04 0.01 99.99

INITIAL 5.37E-03 1 5.37E-03 0.01 99.99

TEORM 4.35E-03 1 4.35E-03 .0.01 100.00

Totals 6.53E+01 359508

FLOWTRACE RESULTS OF ROUTINES

SORTED BY 'IN-LINEY FACTOR (DESCENDING)

(CPU Times are Shown in Seconds)

(Factors Greater Than I Could indicate Candidates for In-Lining)

Routir.c Name Tot Time # Calls Avg Time Percentage "In-Line" Factor

ARTCOMPE 8.01E-01 52400 1.53E-05 1.23 29.11

EVECTORE 9.87E-01 52400 1.88E-05 1.51 23.64

ARTCOMPZ 1.16E+00 34800 3.34E-05 1.78 8.86

EVECTORZ 1.18E+00 34800 3.40E-05 1.81 8.71

GSOLVE 4.58E+00 52400 8.74E-05 7.02 5.09

BETATVDE 6.77E+00 52400 1.29E-04 10.37 3.45
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FSOLVE 6.13E+00 34800 1.76E-04 9.39 1.68

BETATVDZ 1.58E+01 34800 4.54E-04 24.22 0.65

BNDIN 1.42E-02 1000 1.42E-05 0.02 0.60

BNDEX 4.26E-02 1000 4.26E-05 0.07 0.20

BNDBLD 1.96E-01 1000 1.96E-04 0.30 0.04

VISFLUX 7.63E+00 1000 7.63E-03 11.70 0.00

ROEAVGE 2.66E+00 600 4.43E-03 4.07 0.00

ROEAVGZ 2.65E+00 600 4.42E-03 4.06 0.00

ATNSC1 1.98E+00 1 1.98E+00 3.03 0.00

ALPHAZ 1.60E+00 600 2.66E-03 2.45 0.00

EULFL.UX 1.58E+00 1000 1.58E-03 2.43 0.01

OUTPUT 1.58E+00 1 1.58E+00 2.42 0.00

GCALCZ 1.53E+00 600 2.55E-03 2.34 0.00

PSIZETA 1. 22E+00 600 2.04E-03 1.88 0.00

TMSTEP 1.08E+00 200 5.40E-03 1.65 0.00

ALPHAE 1.07E+00 400 2.68E-03 1.65 0.00

GCALGE 1.02E+00 400 2.55E-03 1.56 0.00

PSIETA 816E-01 400 2.04E-03 1.25 0.00

NORM 5.16E-01 84 6.15E-03 0.79 0.00

EVALUEZ 3-21E-01 600 5.35E-04 0.49 0.01

EVALUEE 3-20E-01 600 5.33E-04 0.49 0.01

STORE 7.79E-03 20 3.90E-04 0.01 0.00

INITIAL 5.37E-03 1 5.37E-03 0.01 0.00

TFORM 4.35E-03 1 4.35E-03 0.01 0.00

Totals 6.53E+01 359508
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C.4 ATNVSG2 (No Jacobian Update Between Operators)

The data processing rate when the viscous .Jacobians are updated only after

a- complete sequence of operator swveeps is 7.6128 x 10-' seconds per grid p)oint Iper

time level. This is for the CRAY X-MP/216, utiiling a 133 x 60 grid. FLO WTRACE

results are for 200 iterations (400 time levels).

FLOWTRACE RESULTS OF ROUTINES

SORTED BY TIME USED (DESCENDING)

(CPU Times are Shown in Seconds)

Routine Name Tot Time # Calls Avg Time Percentage Accum.

JACOBIAN 1.61E+02 200 8.05E-01 66.26 66.26

PSIZETA 2.01E+01 600 3.35E-02 8.26 74.53

PSIETA 1.34E+'01 400 3.36E-02 5.53 80.05

VISFLUX 7.52E+00 1000 7-52E-03 3.10 83.15

FSOLVE 6.03E+00 34800 1.73E-04 2.48 85.63

BETATVDZ 4.69E+00 34800 1.35E-04 1.93 87.56

GSOLVE 4.34E+00 52400 8.28E-05 1.79 89.34

BETATVDE 3.89E+00 52400 7.43E-05 1.60 90.95

ROEAVGE 2.66E+00 600 4.43E-03 1.09 92.04

ROEAVGZ 2.65E+00 600 4.41E-03 1.09 93.13

ATNSC2 1.92E+00 1 1.92E+00 0.79 93.92

ALPHAZ 1.58E+00 600 2.63E-03 0.65 94.57

EULFLUX 1.57E+00 1000 1.57E-03 0.65 95.21

OUTPUT 1.54E+00 1 1.54E+00 0.63 95.85

GCALCZ 1.52E+00 600 2.54E-03 0.63 96.47

EVECT.ORZ 1.16E+00 34800 3.34E-05 0.48 96.95

ARTCOMPZ 1.14E+00 34800 3.27E-05 0.47 97.42
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TMSTEP 1.67E+00 200 5.36E-03 0.44 97.86

ALPHAE 1.06E+00 400 2.66E-03 0.44 98.30

GOALCE 1.02E+00 400 2.54E-03 0.42 98.72

EVECTORE 9.42E-01 52400 1.80E-05 0.39 99.10

ARTCOMPE 7.77E-01 52400 1.48E-05 0.32 99.42

NORM 5.OOE-01 80 6.26E-03 0.21 99.63

EVALUEZ 3.14E-01 600 5.23E-04 0.13 99.76

EVALUEE 3.11E-01 600 5.19E-04 0.13 99.89

BNDBLD 2.03E-01 1000 2.03E-04 0.08 99.97

BNDEX 4.14E-02 1000 4.14E-05 0.02 99.99

BNDIN 1.31E-02 1000 1.31E-05 0.01 99.99

STORE 7.45E-03 20 3.73E-04 0.00 100.00

INITIAL 5.40E-03 1 5.40E-03 0.00 100.00

TFORI 4.22E-03 1 4.22E-03 0.00 100.00

Totals 2.43E+02 359704
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FLOWTRACE RESULTS OF ROUTINES

SORTED BY 'IN-LINE' FACTOR (DESCENDING)

(CPU Times are Shown in Seconds)

(Factors Greater Than 1 Could Indicate Candidates for In-Lining)

Routine Name Tot Time # Calls Avg Time Percentage "In-Line" Factor

ARTCOMPE 7.77E-01 52400 1.48E-05 0.32 30.03

EVECTORE 9.42E-01 52400 1.80E-0 0.39 24.76

ARTCOMPZ 1.14E+00 34800 3.27E-05 0.47 9.05

EVECTORZ 1.16E+00 34800 3.34E-05 0.48 8.86

BETATVDE 3.89E+00 52400 7.43E-05 1.60 5.99

GSOLVE 4.34E+00 52400 8.28E-05 1.79 5.38

BETATVDZ 4.69E+00 34800 1.35E-04 1.93 2.19

FSOLVE 6.03E+00 34800 1.73E-04 2.48 1.71

BNDIN 1.31E-02 1000 1.31E-05 0.01 0.65

BNDEX 4.14E-02 1000 4.14E-05 0.02 0.21

BNDBLD 2.03E-01 1000 2.03E-04 0.08 0.04

JACOBIAN 1.61E+02 200 8.05E-01 66.26 0.00

PSIZETA 2.01E+01 600 3.35E-02 8.26 0.00

PSIETA 1.34E+01 400 3.36E-02 5.53 0.00

VISFLUX 7.52E+00 1000 7.52E-03 3.10 0.00

ROEAVGE 2.66E+00 600 4.43E-03 1.09 0.00

ROEAVGZ 2.65E+00 600 4.41E-03 1.09 0.00

ATNSC2 1.92E+00 1 1.92E+00 0.79 0.00

ALPHAZ 1.58E+00 600 2.63E-03 0.65 0.00

EULFLUX 1.57E+00 1000 1.57E-03 0.65 0.01
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OUTPUT 1.54E+00 1 1.54E+00 0.63 0.00

GCALCZ 1.52E+00 600 2.54E-03 0.63 0.00

TMSTEP 1.07E+00 200 5.36E-03 0.44 0.00

ALPHAE 1.06E+00 400 2.66E-03 0.44 0.00

GCALCE 1.02E+00 400 2.54E-03 0.42 0.00

NORM 5.OOE-01 80 6.26E-03 0.21 0.00

EVALUEZ 3.14E-01 600 5.23E-04 0.13 0.01

EVALUEE 3.11E-01 600 5.19E-04 0.13 0.01

STORE 7.45E-03 20 3.73E-04 0.00 0.00

INITIAL 5.40E-03 1 5.40E-03 0.00 0.00

TFORM 4.22E-03 1 4.22E-03 0.00 0.00

Totals 2.43E+02 359704
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0.5 ATNSO1 2 (Jacobian Update After Each Operator Sweep)

The data p~rocessing rate when the viscous Jacobians are updated after each

operator sweep is 1.99SS X 10-4 seconds per' grid point per time level. This is for

the CRAY X-MP/216, utiiling a 133 x 60 grid. FLOWTR.ACE results are for 200

-iterations (400 time levels).

FLOWTRACE RESULTS OF ROUTINES

SORTED BY TIME USED (DESCENDING)

(CPU Times are Shown in Seconds)

Routine Name Tot Time # Calls Avg Time Percentage Accum%

PSIZETA 2.41E+02 600 4.01E-01 37.77 37.77

JACOBIAN 1.86E+02 1000 1.86E-01 29.15 66.93

PSIETA 1.62E+'02 400 4.04E-01 25.37 92.30

VISFLUX 7.54E+00 1000 7.54E-03 1.18 93.48

FSOLVE 6.09E+00 34800 1.75E-04 0.95 94.44

BETATVDZ 4.69E+00 34800 1.35E-04 0.74 95.17

GSOLVE 4.56E+00 52400 8.69E-05 0.71 95.89

BETATVDE 4.16E+00 52400 7.93E-05 0.65 96.54

ROEAVGE 2.65E+00 600 4.42E-03 0.42 96.95

ROEAVGZ 2.65E+00 600 4.41E-03 0.41 97.37

ATNSC2 1.93E+00 1 1.93E+00 0.30 97.67

ALPHAZ 1.58E+00 600 2.63E-03 0.25 97.92

EULELUX 1.57E+00 1000 1.57E-03 0.25 98.17

OUTPUT 1.55E+00 1 1.55E+00 0.24 98.41

GCALCZ 1.53E+00 600 2.55E-03 0.24 98.65

EVECTORZ 1.16E+00 34800 3.33E-05 0.18 98.83

ARTCOMPZ 1.14E+00 34800 3.29E-05 0.18 99.01
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TMSTEP 1.06E+00 200 5.32E-03 0.17 99.18

ALPHAE 1.06E+00 400 2.66E-03 0.17 99.34

GCALCE 1.02E+00 400 2.54E-03 0.16 99.50

EVECTORE 9.79E-01 52400 1.87E-05 0.15 99.66

ARTCOMPE 7.85E-01 52400 1.50E-05 0.12 99.78

-NORM 5.03E-01 80 6.29E-03 0.08 99.86

EVALUEZ 3.14E-01 600 5.24E-04 0.05 99.91

EVALUEE 3.13E-01 600 5.22E-04 0.05 99.96

BNDBLD 2.03E-01 1000 2.03E-04 0.03 99.99

BNDEX 4.24E-02 1000 4.24E-05 0.01 100.00

BNDIN 1.42E-02 1000 1.42E-05 0.00 100.00

STORE 7.44E-03 20, 3.72E-04 0.00 100.00

INITIAL 5.35E-03 1 5.35E-03 0.00 100.00

TFORM 4.32E-03 1 4.32E-03 0.00 100.00

Totals 6.38E+02 360504
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FLOWTRACE RESULTS OF ROUTINES

SORTED BY 'IN-LINE' FACTOR (DESCENDING)

(CPU Times, are Shown in Seconds)

(Factors Greater Than 1 Could Indicate Candidates for In-Lining)

Routine Name Tot Time # Calls Avg Time Percentage "In-Line" Factor

ARTCOMPE 7.85E-01 52400 1.50E-05 0.12 29.73

EVECTORE 9.79E-01 52400 1.87E-05 0.15 23.82

ARTCOMPZ 1.14E+00 34800 3.29E-05 0.18 8.99

EVECTORZ 1.16E+00 34800 3.33E-05 0.18 8.87

BETATVDE 4.16E+00 52400 7.93E-05 0.65 5.61

GSOLVE 4.56E+00 52400 8.69E-05 0.71 5.12

BETAtVDZ 4.69E+00 34800 1.35E-04 0.74 2.19

ESOLVE 6.09E+00 34800 1.75E-04 0.95 1.69

BNDIN 1.42E-02 1000 1.42E-05 0.00 0.60

BNDEX 4.24E-02 1000 4.24E-05 0.01 0.20

BNDBLD 2.03E-01 1000 2.03E-04 0.03 0.04

PSIZETA 2.41E+02 600 4.01E-01 37.77 0.00

JACOBIAN 1.86E+02 1000 1.86E-01 29.15 0.00

PSIETA 1.62E+02 400 4.04E-01 25.37 0.00

VISFLUX 7.54E+00 1000 7.54E-03 1.18 0.00

ROEAVGE 2.65E+00 600 4.42E-03 0.42 0.00

ROEAVGZ 2.65E+00 600 4.41E-03 0.41 0.00

ATNSC2 1.93E+00 1 1.93E+00 0.30 0.00

ALPHAZ 1.58E+00 600 2.63E-03 0.25 0.00

EULFLUX 1.57E+00 1000 1.57E-03 0.25 0.01
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OUTPUT 1. 55E+00 1 1.55E+00 0.24 0.00

GCALCZ 1.53E+00 600 2.55E-03 0.24 0.00

TMSTEP 1.06E+00 200 5.32E-03 0.17 0.00

ALPHAE 1.06E+00 400 2.66E-03 0.17 0.00

GCALCE 1.02E+00 400 2.54E-03 0.16 0.00

NORM 5.03E-01 80 6.29E-03 0.08 0.00

EVALUEZ 3.14E-01 600 5.24E-04 0.05 0.01

EVALUEE 3.13E-01 600 5.22E-04 0.05 0.01

STORE 7.44E-03 20 3.72E-04 0.00 0.00

INITIAL 5.35E-03 1 5.35E-03 0.00 0.00

TFORM 4.32E-03 1 4.32E-03 0.00 0.00

totals 6.38E+02 360504
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